Background: Glioblastomas (GBMs) are known for having a vastly heterogenous histopathology. Several studies have shown that GBMs can be histologically undergraded due to sampling errors of small tissue samples. We sought to explore to what extent histological features in GBMs are dependent on the amount of viable tissue on routine slides from both biopsied and resected tumors.
View Article and Find Full Text PDFO6-methylguanine DNA methyltransferase (MGMT) promoter methylation is an important favorable predictive marker in patients with glioblastoma (GBM). We hypothesized that MGMT status could be a surrogate marker of pretreatment tumor biology observed as histopathological and radiological features. Apart from some radiological studies aiming to noninvasively predict the MGMT status, few studies have investigated relationships between MGMT status and phenotypical tumor biology.
View Article and Find Full Text PDFGlioblastomas (GBMs), a type of highly malignant brain tumour, contain various macrophages/microglia that are known as tumour-associated macrophages (TAMs). These TAMs have various roles in tumour biology. Histopathological aspects of TAMs and associations with tumour growth assessed by magnetic resonance imaging (MRI) are poorly described.
View Article and Find Full Text PDFBackground: The preoperative growth of human glioblastomas (GBMs) has been shown to vary among patients. In animal studies, angiogenesis has been linked to hypoxia and faster growth of GBM, however, its relation to the growth of human GBMs is sparsely studied. We have therefore aimed to look for associations between radiological speed of growth and microvessel density (MVD) counts of the endothelial markers vWF (Factor VIII related antigen) and CD105 (endoglin).
View Article and Find Full Text PDFBackground: Rapid growth is a well-known property of glioblastoma (GBM); however, growth rates vary among patients. Mechanisms behind such variation have not been widely studied in human patients. We sought to investigate relationships between histopathologic features and tumor growth estimated from pretreatment magnetic resonance imaging scans.
View Article and Find Full Text PDFBackground: Glioblastomas are highly aggressive and heterogeneous tumors, both in terms of patient outcome and molecular profile. Magnetic resonance imaging of tumor growth could potentially reveal new insights about tumor biology noninvasively. The aim of this exploratory retrospective study was to investigate the prognostic potential of pretreatment growth rate of glioblastomas, after controlling for known prognostic factors.
View Article and Find Full Text PDF