Host immunity against bacteria typically involves antibodies that recognize the microbial surface and promote phagocytic killing. Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of lethal bloodstream infection; however, vaccines and antibody therapeutics targeting staphylococcal surface molecules have thus far failed to achieve clinical efficacy. S.
View Article and Find Full Text PDFStaphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S.
View Article and Find Full Text PDFBacterial invasion of host tissues triggers polymorphonuclear leukocytes to release DNA [neutrophil extracellular traps (NETs)], thereby immobilizing microbes for subsequent clearance by innate defenses including macrophage phagocytosis. We report here that Staphylococcus aureus escapes these defenses by converting NETs to deoxyadenosine, which triggers the caspase-3-mediated death of immune cells. Conversion of NETs to deoxyadenosine requires two enzymes, nuclease and adenosine synthase, that are secreted by S.
View Article and Find Full Text PDFCurr Opin Microbiol
February 2012
Background: Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity.
View Article and Find Full Text PDFResidue 116 of major histocompatibility complex (MHC) class I heavy chains is an important determinant of assembly, that can influence rates of ER-Golgi trafficking, binding to the transporter associated with antigen processing (TAP), tapasin dependence of assembly, and the efficiency and specificity of peptide binding. Here, we investigated assembly and peptide-binding differences between HLA-B*3501(S116) and HLA-B*3503(F116), two alleles differing only at position 116 of the MHC class I heavy chain, that are associated respectively with normal or rapid AIDS progression. A reduced intracellular maturation rate was observed for HLA-B*3503 in HIV-infected and uninfected cells, which correlated with enhanced binding of HLA-B*3503 to TAP.
View Article and Find Full Text PDFA single residue polymorphism distinguishes HLA-B*4402(D116) from HLA-B*4405(Y116), which was suggested to allow HLA-B*4405 to acquire peptides without binding to tapasin-TAP complexes. We show that HLA-B*4405 is not inherently unable to associate with tapasin-TAP complexes. Under conditions of peptide deficiency, both allotypes bound efficiently to TAP and tapasin, and furthermore, random nonamer peptides conferred higher thermostability to HLA-B*4405 than to HLA-B*4402.
View Article and Find Full Text PDFCalnexin is an endoplasmic reticulum chaperone that binds to substrates containing monoglucosylated oligosaccharides. Whether calnexin can also directly recognize polypeptide components of substrates is controversial. We found that calnexin displayed significant conformational lability for a chaperone and that heat treatment and calcium depletion induced the formation of calnexin dimers and higher order oligomers.
View Article and Find Full Text PDFIt is widely believed that the chaperone activity of calreticulin is mediated by its ability to bind glycoproteins containing monoglucosylated oligosaccharides. However, calreticulin is also a polypeptide binding protein. Here we show that heat shock, calcium depletion, or deletion of the C-terminal acidic domain enhance binding of purified calreticulin to polypeptide substrates and enhance calreticulin's chaperone activity.
View Article and Find Full Text PDF