Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.
View Article and Find Full Text PDFSintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm.
View Article and Find Full Text PDFA modified many-body dissipative particle dynamics (mDPD) model is rigorously calibrated to achieve realistic fluid-fluid/solid interphase properties and applied for mesoscale flow simulations to elucidate the transport mechanisms of heptane liquid and water, respectively, through pore networks formed by packed silica nanoparticles with a uniform diameter of 30 nm. Two million CPU core hours were used to complete the simulation studies. Results show reduction of permeability by 54-64% in heptane flow and by 88-91% in water flow, respectively, compared to the Kozeny-Carman equation.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2022
Near monodisperse mesoporous silica nanoparticles (MSN) represent a promising and rapidly developing type of mesoporous silica materials; however, the vast data on their synthesis remains unorganized and ill-understood. We systematically studied the formation of MSN under basic and neutral conditions using various temperatures, CTAB concentrations, hydrolyzing agents (triethanolamine, ammonia, phosphate buffers), and media with different colloidal stabilization properties (with ethanol as a cosolvent and monovalent salts). In the typical conditions for the preparation of stable MSN colloids, the particle size was controlled by colloidal stabilization by the medium (solvent type, ionic strength, and surfactant concentration) in agreement with the "aggregative growth" mechanism, rather than by solely the hydrolysis and condensation rates conventionally used for data interpretation in the classical nucleation theory.
View Article and Find Full Text PDF