The development of rapid analysis of human serum for the presence of allergen-specific Immunoglobulin E (IgE) is currently important. Consequently, we developed two types of three-dimensional (3D) protein biochips. The first one is a 3D hydrogel biochip containing hydrogel droplets with protein molecules (allergens, immunoglobulins and others).
View Article and Find Full Text PDFA general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%).
View Article and Find Full Text PDFTalanta
June 2024
The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.
View Article and Find Full Text PDFThree novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.
View Article and Find Full Text PDFThe approach based on molecular modeling was developed to study dNTP derivatives characterized by new polymerase-specific properties. For this purpose, the relative efficiency of PCR amplification with modified dUTPs was studied using Taq, Tth, Pfu, Vent, Deep Vent, Vent (exo-), and Deep Vent (exo-) DNA polymerases. The efficiency of PCR amplification with modified dUTPs was compared with the results of molecular modeling using the known 3D structures of KlenTaq polymerase-DNA-dNTP complexes.
View Article and Find Full Text PDFNew applications of palladium-catalyzed Sonogashira-type cross-coupling reaction between C5-halogenated 2'-deoxycytidine-5'-monophosphate and novel cyanine dyes with a terminal alkyne group have been developed. The present methodology allows to synthesize of fluorescently labeled C5-nucleoside triphosphates with different acetylene linkers between the fluorophore and pyrimidine base in good to excellent yields under mild reaction conditions. Modified 2'-deoxycytidine-5'-triphosphates were shown to be good substrates for DNA polymerases and were incorporated into the DNA by polymerase chain reaction.
View Article and Find Full Text PDFReplicative strand slippage is a biological phenomenon, ubiquitous among different organisms. However, slippage events are also relevant to non-natural replication models utilizing synthetic polymerase substrates. Strand slippage may notably affect the outcome of the primer extension reaction with repetitive templates in the presence of non-natural nucleoside triphosphates.
View Article and Find Full Text PDFBioorg Chem
June 2020
Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCHNHCOCH linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated.
View Article and Find Full Text PDFThe transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3' ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides.
View Article and Find Full Text PDFTo develop structural modifications of dNTPs that are compatible with Taq DNA polymerase activity, we synthesized eight dUTP derivatives conjugated with Cy3 or Cy5 dye analogues that differed in charge and charge distribution throughout the fluorophore. These dUTP derivatives and commercial Cy3- and Cy5-dUTP were studied in Taq polymerase-dependent polymerase chain reactions (PCRs) and in primer extension reactions using model templates containing one, two and three adjacent adenine nucleotides. The relative amounts of amplified DNA and the kinetic parameters Km and Vmax characterizing the incorporation of labelled dUMPs have been estimated using fluorescence measurements and analysed.
View Article and Find Full Text PDF