Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S.
View Article and Find Full Text PDFIn addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete.
View Article and Find Full Text PDFFimH is the tip adhesin of mannose-specific type 1 fimbriae of Escherichia coli, which are critical to the pathogenesis of urinary tract infections. Point FimH mutations increasing monomannose (1M)-specific uroepithelial adhesion are commonly found in uropathogenic strains of E. coli.
View Article and Find Full Text PDF