Rapid and accurate identification of bacterial pathogens is crucial for effective treatment and infection control, particularly in hospital settings. Conventional methods like culture techniques and MALDI-TOF mass spectrometry are often time-consuming and less sensitive. This study addresses the need for faster and more precise diagnostic methods by developing novel digital PCR (dPCR) assays for the rapid quantification of biomarkers from three Gram-negative bacteria: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa.
View Article and Find Full Text PDFUnlabelled: Targeted high-throughput sequencing (HTS) has revolutionized the way we look at bacterial communities. It can be used for the species-specific detection of bacteria as well as for the determination of the microbiome and resistome and can be applied to samples from almost any environment. However, the results of targeted HTS can be influenced by many factors, which poses a major challenge for its use in clinical diagnostics.
View Article and Find Full Text PDFDetection and quantification of DNA biomarkers relies heavily on the yield and quality of DNA obtained by extraction from different matrices. Although a large number of studies have compared the yields of different extraction methods, the repeatability and intermediate precision of these methods have been largely overlooked. In the present study, five extraction methods were evaluated, using digital PCR, to determine their efficiency in extracting DNA from three different Gram-negative bacteria in sputum samples.
View Article and Find Full Text PDFBackground: Repeated rotation of empiric antibiotic treatment strategies is hypothesized to reduce antibiotic resistance. Clinical rotation studies failed to change unit-wide prevalence of antibiotic resistant bacteria (ARB) carriage, including an international cluster-randomized crossover study. Unit-wide effects may differ from individual effects due to "ecological fallacy".
View Article and Find Full Text PDFEarly diagnosis with rapid detection of the virus plays a key role in preventing the spread of infection and in treating patients effectively. In order to address the need for a straightforward detection of SARS-CoV-2 infection and assessment of viral spread, we developed rapid, sensitive, extraction-free one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) tests for detecting SARS-CoV-2 in saliva. We analyzed over 700 matched pairs of saliva and nasopharyngeal swab (NSB) specimens from asymptomatic and symptomatic individuals.
View Article and Find Full Text PDFImportance: The effects of chlorhexidine (CHX) mouthwash, selective oropharyngeal decontamination (SOD), and selective digestive tract decontamination (SDD) on patient outcomes in ICUs with moderate to high levels of antibiotic resistance are unknown.
Objective: To determine associations between CHX 2%, SOD, and SDD and the occurrence of ICU-acquired bloodstream infections with multidrug-resistant gram-negative bacteria (MDRGNB) and 28-day mortality in ICUs with moderate to high levels of antibiotic resistance.
Design, Setting, And Participants: Randomized trial conducted from December 1, 2013, to May 31, 2017, in 13 European ICUs where at least 5% of bloodstream infections are caused by extended-spectrum β-lactamase-producing Enterobacteriaceae.
Background: Whether antibiotic rotation strategies reduce prevalence of antibiotic-resistant, Gram-negative bacteria in intensive care units (ICUs) has not been accurately established. We aimed to assess whether cycling of antibiotics compared with a mixing strategy (changing antibiotic to an alternative class for each consecutive patient) would reduce the prevalence of antibiotic-resistant, Gram-negative bacteria in European intensive care units (ICUs).
Methods: In a cluster-randomised crossover study, we randomly assigned ICUs to use one of three antibiotic groups (third-generation or fourth-generation cephalosporins, piperacillin-tazobactam, and carbapenems) as preferred empirical treatment during 6-week periods (cycling) or to change preference after every consecutively treated patient (mixing).
Rapid and accurate identification of Streptococcus pneumoniae is important for appropriate and prudent antimicrobial use in the treatment of lower respiratory tract infection. It is difficult to separate S. pneumoniae from commensal viridans group streptococci either by classical techniques or molecular methods.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
November 2014
Background: We report here on 14438 Streptococcus pneumoniae and 14770 Haemophilus influenzae isolates collected from 560 centres globally between 2004 and 2012 as a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.
View Article and Find Full Text PDFBackground: Intensive care units (ICUs) are high-risk areas for transmission of antimicrobial-resistant bacteria, but no controlled study has tested the effect of rapid screening and isolation of carriers on transmission in settings with best-standard precautions. We assessed interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in European ICUs.
Methods: We did this study in three phases at 13 ICUs.
Infect Control Hosp Epidemiol
October 2008
Today, methicillin-resistant Staphylococcus aureus (MRSA) is a feared cause of nosocomial infections worldwide. These organisms can gain increased resistance to antimicrobial agents through biofilm formation, which appears to be a bacterial survival strategy. MRSA isolates obtained from patients were cultured in nutrient-limited medium supplemented with 0.
View Article and Find Full Text PDFBackground: The effectiveness and feasibility of a comprehensive strategy to reduce nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) in a highly endemic setting have not yet been proved. Limited benefits and the high cost of such programs are the main concerns.
Methods: We prospectively evaluated the effect of an aggressive infection control program on transmission of MRSA in the University Clinic of Respiratory and Allergic Diseases.