The influence of higher nervous activity on the processes of autonomic control of the cardiovascular system and baroreflex regulation is of considerable interest, both for understanding the fundamental laws of the functioning of the human body and for developing methods for diagnostics and treatment of pathologies. The complexity of the analyzed systems limits the possibilities of research in this area and requires the development of new tools. Earlier we propose a method for studying the collective dynamics of the processes of autonomic control of blood circulation in the awake state and in different stages of sleep.
View Article and Find Full Text PDFThe question of how much information the photoplethysmogram (PPG) signal contains on the autonomic regulation of blood pressure (BP) remains unsolved. This study aims to compare the low-frequency (LF) and high-frequency components of PPG and BP and assess their correlation with oscillations in interbeat (RR) intervals at similar frequencies. The PPG signal from the distal phalanx of the right index finger recorded using a reflective PPG sensor at green light, the BP signal from the left hand recorded using a Finometer, and RR intervals were analyzed.
View Article and Find Full Text PDFWe studied the properties of low-frequency (LF) heart rate variability (HRV) and photoplethysmographic waveform variability (PPGV) and their interaction under conditions where the hemodynamic connection between them is obviously absent, as well as the LF regulation of PPGV in the absence of heart function. The parameters of HRV and finger PPGV were evaluated in 10 patients during cardiac surgery under cardiopulmonary bypass (on-pump cardiac surgery) with or without cardioplegia. The following spectral indices of PPGV and HRV were ertimated: the total spectral power (TP), the high-frequency (HF) and the LF ranges of TP in percents (HF% and LF%), and the LF/HF ratio.
View Article and Find Full Text PDF