A variety of waste materials are currently being processed using pyrolysis with the objective of valorization, transformation, and conversion into valuable raw materials that can be further utilized. In this work, three different types of char produced from pine sawdust, waste tires and waste from the flat panel display fraction of electrical and electronic equipment were studied. For selection of suitable application, it is necessary to characterize them.
View Article and Find Full Text PDFThe Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells.
View Article and Find Full Text PDFNanoceria is a promising nanomaterial for the catalytic hydrolysis of a wide variety of substances. In this study, it was experimentally demonstrated for the first time that CeO nanostructures show extraordinary reactivity toward sulfonamide drugs (sulfadimethoxine, sulfamerazine, and sulfapyridine) in aqueous solution without any illumination, activation, or pH adjustment. Hydrolytic cleavage of various bonds, including S-N, C-N, and C-S, was proposed as the main reaction mechanism and was indicated by the formation of various reaction products, namely, sulfanilic acid, sulfanilamide, and aniline, which were identified by HPLC-DAD, LC-MS/MS, and NMR spectroscopy.
View Article and Find Full Text PDF