Publications by authors named "Viktoria V Zeisler-Diehl"

Article Synopsis
  • Rice plants develop an apoplastic barrier in their roots to limit oxygen loss during flooding, which helps maintain root growth in low-oxygen soils.
  • Researchers tested the role of the Leaf Gas Film 1 (LGF1) gene in forming this barrier by comparing a rice mutant lacking LGF1, its wild type, and a variant with increased LGF1 expression.
  • The study found that the mutant had a weaker barrier to oxygen loss, but restoring LGF1 function significantly improved barrier strength, linked to higher glycerol ester levels in root cells.
View Article and Find Full Text PDF

In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan.

View Article and Find Full Text PDF

Background: The first step in the contamination of leafy vegetables by human pathogens is their attachment to the leaf surface. The success of this is influenced strongly by the physical and chemical characteristics of the surface itself (number and size of stomata, presence of trichomes and veins, epicuticular waxes, hydrophobicity, etc.).

View Article and Find Full Text PDF

Background And Aims: The benefits and costs of amphistomy (AS) vs. hypostomy (HS) are not fully understood. Here, we quantify benefits of access of CO2 through stomata on the upper (adaxial) leaf surface, using 13C abundance in the adaxial and abaxial epicuticular wax.

View Article and Find Full Text PDF

Hardly anything is known regarding the detoxification of surfactants in crop plants, although they are frequently treated with agrochemical formulations. Therefore, we studied transcriptomic changes in barley leaves induced in response to spraying leaf surfaces with two alcohol ethoxylates (AEs). As model surfactants, we selected the monodisperse tetraethylene glycol monododecyl (CE) ether and the polydisperse BrijL4.

View Article and Find Full Text PDF

Background: The cuticle plays an important role in the survival of plants, and it is important to preserve the quality of fleshy fruits like sweet cherry. Plant hormones play a role in cuticle formation. In this sense, jasmonates have been shown to induce cuticle biosynthesis, but until today this has not been demonstrated in sweet cherry fruit.

View Article and Find Full Text PDF

The efficiency of suberized plant/environment interfaces as transpiration barriers is not established by the suberin polymer but by the wax molecules sorbed to the suberin polymer. Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs (soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition and efficiency as transpiration barriers (water loss in m s) of the different suberized cell wall samples were quantified.

View Article and Find Full Text PDF

Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling.

View Article and Find Full Text PDF

The effect of contrasting environmental growth conditions (in vitro tissue culture, ex vitro acclimatisation, climate chamber, greenhouse and outdoor) on leaf development, cuticular wax composition, and foliar transpiration of detached leaves of the Populus × canescens clone 84 K were investigated. Our results show that total amounts of cuticular wax increased more than 10-fold when cultivated in different growth conditions, whereas qualitative wax composition did not change. With exception of plants directly taken from tissue culture showing rapid dehydration, rates of water loss (residual foliar transpiration) of intact but detached leaves were constant and independent from growth conditions and thus independent from increasing wax amounts.

View Article and Find Full Text PDF

Surfactants are known to enhance the foliar uptake of agrochemicals by plasticizing the transport-limiting barrier of plant cuticles. The effects of two different polydisperse alcohol ethoxylates with a low degree [mean ethoxylation of 5 ethylene oxide units (EOs)] and a high degree (mean ethoxylation of 10 EOs) of ethoxylation on cuticular barrier properties were investigated. The diffusion of the lipophilic organic molecule C-epoxiconazole and of polar H-water across cuticles isolated from six different plant species was investigated.

View Article and Find Full Text PDF

Time-dependent contact angle measurements of pure water on barley leaf surfaces allow quantifying the kinetics of surfactant diffusion into the leaf. Barley leaf surfaces were sprayed with three different aqueous concentrations (0.1, 1.

View Article and Find Full Text PDF

Extracellular lipids of plants can be analyzed using gas chromatography and mass spectrometry. Soluble waxes are extracted with chloroform and thus separated from the extracellular polymers cutin and suberin. Cutin and suberin have to be depolymerized using boron trifluoride-methanol or methanolic HCl before analysis.

View Article and Find Full Text PDF

Most of the aerial organs of vascular plants are covered by a protective layer known as the cuticle, the main purpose of which is to limit transpirational water loss. Cuticles consist of an amphiphilic polyester matrix, polar polysaccharides that extend from the underlying epidermal cell wall and become less prominent towards the exterior, and hydrophobic waxes that dominate the surface. Here we report that the polarity gradient caused by this architecture renders the transport of water through astomatous olive and ivy leaf cuticles directional and that the permeation is regulated by the hydration level of the cutin-rich outer cuticular layer.

View Article and Find Full Text PDF

NAC (NAM (no apical meristem), ATAF1/2, and CUC2 (cup-shaped cotyledon)) proteins are one of the largest families of plant-specific transcription factors, and this family is present in a wide range of land plants. Here, we have investigated the role of in the regulation of suberin biosynthesis and deposition in . Subcellular localization and transcriptional activity assays showed that localizes in the nucleus, where it functions as a transcription activator.

View Article and Find Full Text PDF

The skin of fleshy fruit is typically covered by a thick cuticle. Some fruit species develop different forms of layers directly above their skin. Reticulation, for example, is a specialized suberin-based coating that ornaments some commercially important melon () fruit and is an important quality trait.

View Article and Find Full Text PDF

Barley (Hordeum vulgare) is more drought tolerant than other cereals, thus making it an excellent model for the study of the chemical, transcriptomic and physiological effects of water deficit. Roots are the first organ to sense soil water deficit. Therefore, we studied the response of barley seminal roots to different water potentials induced by polyethylene glycol (PEG) 8000.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: