Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function.
View Article and Find Full Text PDFFe-S clusters act as co-factors of proteins with diverse functions, for example, in DNA repair. Downregulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability through the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects.
View Article and Find Full Text PDFMaturation of Fe/S proteins in mammals is an intricate process mediated by two assembly systems located in the mitochondrial and cytosolic-nuclear compartments. Malfunction particularly of the mitochondrial system gives rise to severe neurological, metabolic, or hematological disorders, often with fatal outcome. In this chapter, we describe approaches for the differential biochemical investigation of cellular Fe/S protein maturation in mitochondria, cytosol, and nucleus.
View Article and Find Full Text PDFDuring milking the teat cup liner is the interface between the teat of a dairy cow and the milking system, so it should be very well adapted to the teat. Therefore, the aim of the present study was to determine the effect of liner type on the directly measuring teat load caused by a collapsing liner with a pressure-indicating film. The Extreme Low pressure-indicating film was used to detect the effect of six different liners on teat load.
View Article and Find Full Text PDFCytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex.
View Article and Find Full Text PDFMitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery.
View Article and Find Full Text PDFBiochim Biophys Acta
June 2015
Iron-sulfur (Fe-S) clusters are versatile protein cofactors that require numerous components for their synthesis and insertion into apoproteins. In eukaryotes, maturation of cytosolic and nuclear Fe-S proteins is accomplished by cooperation of the mitochondrial iron-sulfur cluster (ISC) assembly and export machineries, and the cytosolic iron-sulfur protein assembly (CIA) system. Currently, nine CIA proteins are known to specifically assist the two major steps of the biogenesis reaction.
View Article and Find Full Text PDF