Publications by authors named "Viktoria Osipova"

The regularities of the effect of a complex stress state on the strength of an AlMg5/epoxy adhesive joint are experimentally studied at -50 and +23 °C in tension+shear and compression+shear tests with different normal-to-shear stress ratios. The tests use modified Arcan specimens and Brazil-nut-sandwich specimens, with the lateral faces of the adhesive layer having a shape of a mushroom-like "ridge" aimed at reducing stress concentration at the specimen edges. An original computational model of a selected microvolume including the interface together with the adjacent substrate and adhesive layers is used to process the experimental results.

View Article and Find Full Text PDF

Here we report on the development and investigation of a novel multiplex assay model based on polymer microspheres (PMS) encoded with ternary AIS/ZnS quantum dots (QDs). The system was prepared via layer-by-layer deposition technique. Our studies of Förster resonance energy transfer (FRET) between the QD-encoded microspheres and two different cyanine dyes have demonstrated that the QD photoluminescence (PL) quenching steadily increases with a decrease in the QD-dye distance.

View Article and Find Full Text PDF

Ternary quantum dots (QDs) are very promising nanomaterials with a range of potential applications in photovoltaics, light-emitting devices, and biomedicine. Despite quite intensive studies of ternary QDs over the last years, the specific relaxation channels involved in their emission mechanisms are still poorly understood, particularly in the corresponding core-shell nanostructures. In the present work, we have studied the recombination pathways of AgInS QDs stabilized with the ZnAgInS alloy layer and the ZnS shell (AIS/ZAIS/ZnS QDs) using time-resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Nowadays, multiplex analysis is very popular, since it allows to detect a large number of biomarkers simultaneously. Traditional multiplex analysis is usually based on changes of photoluminescence (PL) intensity and/or PL band spectral positions in the presence of analytes. Using PL lifetime as an additional parameter might increase the efficiency of multiplex methods.

View Article and Find Full Text PDF