Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the gene, PLA particles, and a fibrin clot for bone defect healing.
View Article and Find Full Text PDFInt J Mol Sci
November 2022
Gene therapy is one of the most promising approaches in regenerative medicine. Gene-activated matrices provide stable gene expression and the production of osteogenic proteins in situ to stimulate osteogenesis and bone repair. In this study, we developed new gene-activated matrices based on polylactide granules (PLA) impregnated with polyplexes and included in chitosan hydrogel or PRP-based fibrin hydrogel.
View Article and Find Full Text PDF