The JAK/STAT pathway plays a crucial role in the pathogenesis of rheumatoid arthritis (RA) and JAK inhibitors have emerged as a new group of effective drugs for RA treatment. Recently, high STAT3 levels have been associated with the upregulation of the scaffold protein NEDD9, which is a regulator of T-cell trafficking and promotes collagen-induced arthritis (CIA). In this study, we aimed to reveal how treatment with JAK inhibitors affects NEDD9 in CD4+ T cells from RA patients.
View Article and Find Full Text PDFObjective: SLE is an autoimmune disease with a complex pathogenesis. T-cell infiltration into organs contributes to inflammation and organ damage in SLE. Recently, G-protein signalling modulator 2 (GPSM2) has been shown to be implicated in T-cell migration.
View Article and Find Full Text PDFRegulatory T (Treg) cells play an important role in immune tolerance and contribute to the prevention of autoimmune diseases, including rheumatoid arthritis (RA). The differentiation, function and stability of Treg cells is controlled by members of the Ikaros zinc finger transcription factor family. In this study, we aimed to reveal how the expression of Ikaros transcription factors is affected by disease activity in RA.
View Article and Find Full Text PDFBackground: The cell surface molecule CD6 is a modulator of T cell receptor (TCR) signaling. Recently, it has been reported that CD6 is downregulated on CD4+ T cells following T cell activation. This mechanism could limit the efficacy of anti-CD6 therapeutical antibodies.
View Article and Find Full Text PDFAutoimmune arthritis is characterized by impaired regulatory T (Treg) cell migration into inflamed joint tissue and by dysregulation of the balance between Treg cells and Th17 cells. Interleukin-6 (IL-6) is known to contribute to this dysregulation, but the molecular mechanisms behind impaired Treg cell migration remain largely unknown. In this study, we assessed dynamic changes in membrane-bound IL-6 receptor (IL6R) expression levels on Th17 cells by flow cytometry during the development of collagen-induced arthritis (CIA).
View Article and Find Full Text PDFThe ability of regulatory T (T) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired T cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered T cell migration in RA.
View Article and Find Full Text PDFAdoptive cell therapy with chimeric antigen receptor (CAR)-redirected T cells induced spectacular regressions of leukemia and lymphoma, however, failed so far in the treatment of solid tumors. A cause is thought to be T cell repression through TGF-β, which is massively accumulating in the tumor tissue. Here, we show that T cells with a CD28-ζ CAR, but not with a 4-1BB-ζ CAR, resist TGF-β-mediated repression.
View Article and Find Full Text PDFHum Gene Ther Methods
December 2017
Redirected T cells genetically modified with a chimeric antigen receptor (CAR) have induced spectacular remissions of refractory leukemia/lymphoma in early phase trials, attracting interest to use CAR T cells in a variety of other applications including solid cancer and nonmalignant diseases. However, extensive preclinical explorations demand highly effective and robust procedures for the genetic modification of blood T cells; the same applies for engineering with a recombinant T cell receptor. We present laboratory procedures in a step-by-step protocol to engineer human and mouse T cells with a CAR by γ-retro- or lentiviral transduction for further preclinical testing.
View Article and Find Full Text PDF