Herein we investigated hydrophilic surface modification of SiO containing amorphous hydrogenated carbon nanocomposite films (DLC:SiO) via the use of atmospheric oxygen plasma treatment. The modified films exhibited effective hydrophilic properties with complete surface wetting. More detailed water droplet contact angle (CA) measurements revealed that oxygen plasma treated DLC:SiO films maintained good wetting properties with CA of up to 28 ± 1° after 20 days of aging in ambient air at room temperature.
View Article and Find Full Text PDFTransparent polymer layers that heal minor scratches and maintain the optical properties of the devices for a long time are highly desirable in optoelectronics. This paper presents the results of the electrical characterization of thin PEDOT:PSS films on the novel, optically transparent thiol-ene substrates capable of healing scratches under room-temperature conditions. Electrical properties of the PEDOT:PSS films deposited on the conventional alumina ceramic substrates were also tested for comparative purposes.
View Article and Find Full Text PDFThis paper presents the first attempt to texturize a fully crosslinked thermoset shape memory polymer using a hot embossing technique. UV-cured thiol-ene films were successfully embossed with anisotropically-etched Si (100) stamps at a temperature of 100 °C, which is about 50 °C above the glass transition temperature of the polymer. The low storage modulus of the polymer in a rubbery state allowed us to permanently emboss random micro-pyramidal patterns onto the surface of the film with high fidelity by applying 30 MPa pressure for 1 h.
View Article and Find Full Text PDFA photopolymerizable thiol-ene composition was prepared as a mixture of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT), with 1 wt. % of 2,2-dimethoxy-2-phenylacetophenone (DMPA) photoinitiator. A systematic analytical analysis that investigated the crosslinked PETMP-TTT polymer coatings employed Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, differential scanning calorimetry, thermogravimetric analysis, pencil hardness, thermo-mechanical cyclic tensile, scratch testing, and atomic force microscopy.
View Article and Find Full Text PDFWe present Raman studies of graphene films grown on copper foil by atmospheric pressure CVD with n-decane as a precursor, a mixture of nitrogen and hydrogen as the carrier gas, under different hydrogen flow rates. A novel approach for the processing of the Raman spectroscopy data was employed. It was found that in particular cases, the various parameters of the Raman spectra can be assigned to fractions of the films with different thicknesses.
View Article and Find Full Text PDF