Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection.
View Article and Find Full Text PDFHemangioma, the predominant benign tumor occurring in infancy, exhibits a wide range of prognoses and associated outcomes. The accurate determination of prognosis through noninvasive imaging modalities holds essential importance in enabling effective personalized treatment strategies and minimizing unnecessary surgical interventions for individual patients. The present study focuses on advancing the personalized prognosis of hemangioma by leveraging noninvasive optical sensing technologies by the development of a novel rapid hyperspectral sensor (image collection in 5 s, lateral resolution of 10 μm) that is capable of quantifying hemoglobin oxygenation and vascularization dynamics during the course of tumor evolution.
View Article and Find Full Text PDFThis paper presents an approach for achieving full optical photoacoustic imaging with enhanced resolution utilizing speckle pattern analysis. The proposed technique involves projecting patterns derived from binary masks corresponding to orthogonal functions onto the target to elicit a photoacoustic signal. The resulting signal is then recorded using a high-speed camera and analyzed using correlation analysis of the speckle motion.
View Article and Find Full Text PDFSimulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2015
The radiation of a charged-particle bunch moving perpendicularly to a semi-infinite plane grid composed of thin parallel wires is analyzed using the method of averaged boundary conditions (the period of the grid is assumed to be much less than the wavelengths under investigation). We perform an analysis of the volume radiation and surface waves generated by a bunch of finite length. It is shown that the patterns of the volume radiation fundamentally differ from those that arise in the case of an infinite grid.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2014
The electromagnetic fields of charges moving along the boundary of a "wire metamaterial" perpendicularly to the wires are investigated. The metamaterial under consideration represents a volume-periodic structure of thin parallel wires located in a square lattice. This structure is described by an effective permittivity tensor and exhibits both spatial and frequency dispersion.
View Article and Find Full Text PDFThe electromagnetic radiation of a charge moving in an infinite 3D structure made of parallel wires is considered. The periods of the structure are assumed to be small; therefore, it can be described by an effective permittivity tensor. The charge velocity is perpendicular to the wires.
View Article and Find Full Text PDF