Recent advancements in magnetic resonance imaging (MRI) techniques are promising for the detection of fetal abnormalities, and MRI may supplement or replace prenatal ultrasound scans in the future. In particular, the interest of scientific and medical communities in high-field (3T) MRI continues to grow due to its improved contrast-to-noise and signal-to-noise ratios compared to clinical MRI of lower field strength (1.5T).
View Article and Find Full Text PDFThis study comprehensively assesses radiofrequency (RF) volumetric wireless coils utilizing artificial materials for clinical breast MRI. In particular, we evaluated the transmit efficiency, RF safety, and homogeneity of magnetic field amplitude distribution for four structures electromagnetically coupled with a whole-body birdcage coil: extremely high permittivity ceramic coil, solenoid coil, Helmholtz coil, and metamaterial-inspired coil based on periodically coupled split-loop resonators. These coils exhibit favorable attributes, including lightweight construction, compactness, cost-effectiveness, and ease of manufacturing.
View Article and Find Full Text PDFIn this work, we propose an application of high permittivity materials (HPMs) to improve functional magnetic resonance imaging (fMRI) at 1.5 T, increasing the receive (Rx) sensitivity of a commercial multi-channel head coil. To evaluate the transmit efficiency, specific absorption rate (SAR), and the signal-to-noise ratio (SNR) changes introduced by the HPMs with relative permittivity of 4500, we considered the following configurations in simulation: a whole-body birdcage coil and an Rx-only multi-channel head coil with and without the HPM blocks in the presence of a homogeneous head phantom or a human body model.
View Article and Find Full Text PDFPurpose: To demonstrate the feasibility of using octafluorocyclobutane (OFCB, c-C F ) for T mapping of lungs in F MRI.
Methods: The study was performed at 7 T in three healthy rats and three rats with pulmonary hypertension. To increase the sensitivity of F MRI, a bent-shaped RF coil with periodic metal strips structure was used.
Purpose: Development of a novel quadrature inductively driven transceive wireless coil for breast MRI at 1.5 T.
Methods: A quadrature wireless coil (HHMM-coil) design has been developed as a combination of two linearly polarized coils: a pair of 'metasolenoid' coils (MM-coil) and a pair of Helmholtz-type coils (HH-coil).
In this paper, we present the initial experimental investigation of a two-coil receive/transmit design for small animals imaging at 7T MRI. The system uses a butterfly-type coil tuned to 300 MHz for scanning the H nuclei and a non-resonant loop antenna with a metamaterial-inspired resonator with the ability to tune over a wide frequency range for X-nuclei. H, P, Na and C, which are of particular interest in biomedical MRI, were selected as test nuclei in this work.
View Article and Find Full Text PDFIn this work, we propose an application of a metamaterial inspired volumetric wireless coil (WLC) based on coupled split-loop resonators for targeted breast MRI at 1.5 T. Due to strong electromagnetic coupling with the body coil, the metamaterial inspired WLC locally focuses radiofrequency (RF) magnetic flux in the target region, thus improving both transmit and receive performance of the external body coil.
View Article and Find Full Text PDF