Urban population exposure to tropospheric ozone is a serious health concern in Europe countries. Although there are insufficient evidence to derive a level below which ozone has no effect on mortality WHO (World Health Organization) uses SOMO35 (sum of means over 35 ppb) in their health impact assessments. Is this paper, the artificial neural network (ANN) approach was used to forecast SOMO35 at the national level for a set of 24 European countries, mostly EU members.
View Article and Find Full Text PDFAlthough the use of municipal solid waste to generate energy can decrease dependency on fossil fuels and consequently reduces greenhouse gases emissions and areas that waste occupies, in many countries municipal solid waste is not recognized as a valuable resource and possible alternative fuel. The aim of this study is to develop a model for the prediction of primary energy production from municipal solid waste in the European countries and then to apply it to the Balkan countries in order to assess their potentials in that field. For this purpose, general regression neural network architecture was applied, and correlation and sensitivity analyses were used for optimisation of the model.
View Article and Find Full Text PDFThis paper presents an application of experimental design for the optimization of artificial neural network (ANN) for the prediction of dissolved oxygen (DO) content in the Danube River. The aim of this research was to obtain a more reliable ANN model that uses fewer monitoring records, by simultaneous optimization of the following model parameters: number of monitoring sites, number of historical monitoring data (expressed in years), and number of input water quality parameters used. Box-Behnken three-factor at three levels experimental design was applied for simultaneous spatial, temporal, and input variables optimization of the ANN model.
View Article and Find Full Text PDFSuccinimides, which contain a pharmacophore responsible for anticonvulsant activity, are frequently used antiepileptic drugs and the synthesis of their new derivatives with improved efficacy and tolerability presents an important task. Nowadays, multitarget/tasking methodologies focused on quantitative-structure activity relationships (mt-QSAR/mtk-QSAR) have an important role in the rational design of drugs since they enable simultaneous prediction of several standard measures of biological activities at diverse experimental conditions and against different biological targets. Relating to this very topic, the mt-QSAR/mtk-QSAR methodology can give only binary classification models, and as such, in this study a regression mtk-QSAR (rmtk-QSAR) model based on a novel modular neural network (MNN) has been proposed.
View Article and Find Full Text PDFAccurate prediction of water quality parameters (WQPs) is an important task in the management of water resources. Artificial neural networks (ANNs) are frequently applied for dissolved oxygen (DO) prediction, but often only their interpolation performance is checked. The aims of this research, beside interpolation, were the determination of extrapolation performance of ANN model, which was developed for the prediction of DO content in the Danube River, and the assessment of relationship between the significance of inputs and prediction error in the presence of values which were of out of the range of training.
View Article and Find Full Text PDFThis paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model.
View Article and Find Full Text PDFThis paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters.
View Article and Find Full Text PDFThis paper describes the development of an artificial neural network (ANN) model based on economical and sustainability indicators for the prediction of annual non-methane volatile organic compounds (NMVOCs) emissions in China for the period 2005-2011 and its comparison with inventory emission factor models. The NMVOCs emissions in China were estimated using ANN model which was created using available data for nine European countries, which NMVOC emission per capita approximately correspond to the Chinese emissions, for the period 2004-2012. The forward input selection strategy was used to compare the significance of particular inputs for the prediction of NMVOC emissions in the nine selected EU countries and China.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2016
Ammonia emissions at the national level are frequently estimated by applying the emission inventory approach, which includes the use of emission factors, which are difficult and expensive to determine. Emission factors are therefore the subject of estimation, and as such they contribute to inherent uncertainties in the estimation of ammonia emissions. This paper presents an alternative approach for the prediction of ammonia emissions at the national level based on artificial neural networks and broadly available sustainability and economical/agricultural indicators as model inputs.
View Article and Find Full Text PDFBiological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs.
View Article and Find Full Text PDFThe aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity.
View Article and Find Full Text PDFThis paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM(10) emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting.
View Article and Find Full Text PDF