Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp)-H and C(sp)-H activation processes.
View Article and Find Full Text PDFPalladium nanoparticles (PdNp) were revealed as an efficient hydrogen isotope exchange catalyst for the deuterium and tritium labeling of benzylic positions of complex molecules. A practical way to obtain small palladium nanoparticles and to apply them as a catalyst for hydrogen isotope exchange (HIE) is presented. Several model compounds and popular bioactive molecules were submitted to HIE reactions catalyzed by the PdNp.
View Article and Find Full Text PDFWith this work, we report the synthesis and full characterization of nickel nanoparticles (NPs) stabilized by N-heterocyclic carbene (NHC) ligands, namely 1,3-bis(cyclohexyl)-1,3-dihydro-2H-imidazol-2-ylidene (ICy) and 1,3-bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IMes). Although the resulting NPs have the same size, they display different magnetic properties and different reactivities, which result from ligand effects. In the context of H/D exchange on pharmaceutically relevant heterocycles, Ni@NHC shows a high chemoselectivity, avoiding the formation of undesired reduced side-products and enabling a variety of H/D exchange on nitrogen-containing aromatic compounds.
View Article and Find Full Text PDFRuthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D or T gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification.
View Article and Find Full Text PDFA general approach for the efficient hydrogen-isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D or T as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC-MS quantification.
View Article and Find Full Text PDF