Publications by authors named "Viktor M Kalita"

Recently, the possibility of exploiting the phenomenon of spin transition (ST) has been intensively investigated; therefore, it is particularly important to study the behavior of ST under various stimuli. Here, the shape and content of the intermediate phase of ST in Hoffmann-like compounds [Fe(Fpz)M(CN)] (M = Pt, Pd) under external stimuli are studied. For this purpose, magnetic and Raman spectroscopy studies were carried out.

View Article and Find Full Text PDF

It is shown that the critical exponent for the effective shear modulus of a composite medium where a compliant polymer matrix is filled with ferromagnetic particles may significantly depend on the external magnetic field. The physical consequence of this dependence is the critical behavior of the relative magnetorheological effect.

View Article and Find Full Text PDF

The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al.

View Article and Find Full Text PDF

Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles.

View Article and Find Full Text PDF