Publications by authors named "Viktor Kolar"

Article Synopsis
  • - This research investigates the mechanical and thermo-mechanical properties of recycled low-density polyethylene (LDPE) sourced from post-consumer waste, focusing on static and cyclic fatigue testing.
  • - The results revealed that the recycled LDPE performed comparably to virgin materials in both static and cyclic tests, with no significant loss in tensile strength and an enhancement in mechanical performance due to the high-quality regranulates produced.
  • - Advanced techniques like Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) confirmed minimal changes in the material's chemical structure and thermal properties between recycled and virgin LDPE.
View Article and Find Full Text PDF

This work investigates the effect of varying the knitting structure and stitch length (SL) on various thermo-physiological and ergonomic comfort properties of the occupational graduated compression socks. Thermo-physiological comfort, ergonomic comfort and dimensional stability of theses stockings were analysed in a comparative manner. Obtained results were evaluated statistically using the technique of analysis of variance (ANOVA).

View Article and Find Full Text PDF

Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on the above-mentioned problems using the treatment of silicon coating and formation of nanofibers via facile-solution processing. The findings revealed that the use of an economic and eco-friendly superhydrophobic (contact angle higher than 150°) modification of porous nonwovens with silicon nanofibers significantly enhanced their intrinsic characteristics.

View Article and Find Full Text PDF

This paper investigates the development of fabric materials using several blends of inherently fire-resistant (FR) fibers and various knitted structures. The samples are evaluated with respect to their performance and comfort-related properties. Inherently fire-resistant fibers, e.

View Article and Find Full Text PDF

Compression stockings/socks are one of the most essential materials to treat vascular disorders in veins. However, the comfort of wearing such stockings over prolonged period of time is a major problem. There is limited research in the area of comfort optimization while retaining the compressional performance.

View Article and Find Full Text PDF

The paper deals with research focused on the use of fillers in the field of polymeric materials produced by additive technology SLA (stereolithography). The aim of the research is to evaluate 3D printing parameters, the mechanical properties (tensile strength, hardness), and the interaction of individual phases (polymer matrix and filler) in composite materials using SEM analysis. The tested fillers were cotton flakes and ground carbon fibres in different proportions.

View Article and Find Full Text PDF

The current work is focused on numerical and experimental studies of woven fabric composites modified by hybridisation with biological (cellulosic) filler materials. The mechanical performance of the composites is characterized under tensile, bending and impact loads and the effect of hybridisation is observed with respect to pure and nonhybrid composites. Numerical models are developed using computational tools to predict mechanical performance under tensile loading.

View Article and Find Full Text PDF

For a sustainable environment and to tackle the pollution problem, industrial wastes can be used in concrete composite materials. This is especially beneficial in places prone to earth quack and lower temperature. In this study, five different types of waste fibres such as polyester waste, rubber waste, rock wool waste, glass fibre waste and coconut fibre waste were used as an additive in 0.

View Article and Find Full Text PDF

The aim of this research was to evaluate the effect of untreated and 5% aqueous NaOH solution-treated filler of the plant Jatropha Curcas L. on the mechanical properties of adhesive bonds, especially in terms of their service life at different amplitudes of cyclic loading. As a result of the presence of phorbol ester, which is toxic, Jatropha oilseed cake cannot be used as livestock feed.

View Article and Find Full Text PDF

This research is aimed at evaluating the effect of low-cycle fatigue on a newly designed hybrid sandwich ski structure to determine the changes that may occur due to cyclic loading and thus affect its use. This is primarily concerned with the fatigue behavior of the tested ski over different time intervals simulating its seasonal use and its effect on the mechanical properties of the ski, i.e.

View Article and Find Full Text PDF

This paper focuses on the comfort properties of graduated and preventive compression stockings for people who work long hours in standing postures and for athletes for proper blood circulation. The present study was conducted in order to investigate the effects of the yarn insertion density and inlaid stitches on the performance of the compression stockings. The effects of these parameters on the thermo-physiological comfort properties were tested with standard and developed methods of testing.

View Article and Find Full Text PDF

Additive production is currently perceived as an advanced technology, where intensive research is carried out in two basic directions-modifications of existing printing materials and the evaluation of mechanical properties depending on individual production parameters and the technology used. The current research is focused on the evaluation of the fatigue behavior of 3D-printed test specimens made of pure PLA and PLA reinforced with filler based on pinewood, bamboo, and cork using FDM (fused deposition modeling) technology. This research was carried out in response to the growing demand for filaments from biodegradable materials.

View Article and Find Full Text PDF

The research is focused on the evaluation of mechanical properties of adhesive bonds with a composite layer of adhesive to increase their service life (safety) under cyclic loading of different intensities. Cyclic loading represents a frequent cause of adhesive bond failure and, thus, a reduction in their service life. Waste from the production of coconut oil, that is, coconut shells in the form of particles, was used as a filler.

View Article and Find Full Text PDF

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated.

View Article and Find Full Text PDF

The research is focused on the design and development of woven textile-based structural hollow composites. E-Glass and high tenacity polyester multifilament yarns were used to produce various woven constructions. Yarn produced from cotton shoddy (fibers extracted from waste textiles) was used to develop hybrid preforms.

View Article and Find Full Text PDF

This study is focused on the mechanical properties and service life (safety) evaluation of hybrid adhesive bonds with shaped overlapping geometry (wavy-lap) and 100% natural cotton fabric used as reinforcement under cyclic loading using various intensities. Cyclic loading were implemented between 5-50% (267-2674 N) and 5-70% (267-3743 N) from the maximum strength (5347 N) measured by static tensile test. The adhesive bonds were loaded by 1000 cycles.

View Article and Find Full Text PDF

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources.

View Article and Find Full Text PDF

This research evaluates the mechanical properties of hybrid adhesive bonds with various 100% cotton fabrics in static and quasi-static conditions and the influence of alkali surface treatment (NaOH) of the cotton fabrics on the mechanical properties. Biological fibers in polymers are characterized by low wettability with the matrix, which decreases mechanical properties. Adhesive bonds usually operate in cyclic stress, which causes irreversible failure before maximal strength.

View Article and Find Full Text PDF

The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler.

View Article and Find Full Text PDF

This paper deals with a research focused on utilization of microparticle and short-fiber filler based on cotton post-harvest line residues in an area of polymeric composites. Two different fractions of the biological filler (FCR-reinforced cotton filler) of 20 and 100 µm and the filler with short fibers of a length of 700 µm were used in the research. The aim of the research was to evaluate mechanical characteristics of composites and adhesive bonds for the purpose of gaining new pieces of knowledge which will be applicable in the area of material engineering and assessing application possibilities of residues coming into being from agricultural products processing.

View Article and Find Full Text PDF