In the last decade, the task of developing environmentally friendly and cost-effective methods for obtaining stable superhydrophobic coatings has become topical. In this study, we examined the effect of the concentrations of filler and polymer binder on the hydrophobic properties and surface roughness of composite coatings made from organic-aqueous compositions based on hexyl methacrylate (HMA) and glycidyl methacrylate (GMA) copolymers. Silicon dioxide nanoparticles were used as a filler.
View Article and Find Full Text PDFIn this study, the effect of three promising feed additives (chelated compounds of trace elements, butyric acid, lycopene) on changes in the culturable microbiota and histological parameters of two sections of the intestines of (zebrafish) was studied. The use of these feed additives can help to eliminate the deficiency of trace elements, modulate the composition of the microbiota due to the postbiotic properties of butyric acid, and reduce oxidative stress when using lycopene. Incorporation of the investigated supplements in the feed resulted in a significant change in the relative abundance of certain groups of microorganisms.
View Article and Find Full Text PDFThis paper discusses the influence of the structure of copolymers based on glycidyl methacrylate and alkyl methacrylates with C-C hydrocarbon side groups on the wettability and sorption properties of surface-modified chitosan aerogels. The grafting of copolymers onto the surface of aerogels was confirmed by elemental analysis, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. As a result of the modification, with an increase in the amount of the hydrocarbon substituent alkyl methacrylate, the surface of the resulting materials became hydrophobic with contact angles in the range of 146-157°.
View Article and Find Full Text PDFThis study proposes to use reactive copolymers based on glycidyl methacrylate and fluoroalkyl methacrylates with a low fluorine content in the monomer unit as agents to reduce the surface free energy (SFE). This work reveals the effect of the structure and composition of copolymers on the SFE and water-repellent properties of these coatings. On a smooth surface, coatings based on copolymers of glycidyl methacrylate and fluoroalkyl methacrylates with fluorine atoms in the monomer unit ranging from three to seven are characterized by SFE values in the range from 25 to 13 mN/m, which is comparable to the values for polyhedral oligomeric silsesquioxanes and perfluoroalkyl acrylates.
View Article and Find Full Text PDF