The phase of the optical transfer function is advocated as an important tool in the characterization of modern incoherent imaging systems. It is shown that knowledge of the phase transfer function (PTF) can benefit a diverse array of applications involving both traditional and computational imaging systems. Areas of potential benefits are discussed, and three applications are presented, demonstrating the utility of the phase of the complex frequency response in practical scenarios.
View Article and Find Full Text PDFThe optical transfer function of a cubic phase mask wavefront coding imaging system is experimentally measured across the entire range of defocus values encompassing the system's functional limits. The results are compared against mathematical expressions describing the spatial frequency response of these computational imagers. Experimental data shows that the observed modulation and phase transfer functions, available spatial frequency bandwidth and design range of this imaging system strongly agree with previously published mathematical analyses.
View Article and Find Full Text PDFWith the advent of modern-day computational imagers, the phase of the optical transfer function may no longer be summarily ignored. This study discusses some important properties of the phase transfer function (PTF) of digital incoherent imaging systems and their implications on the performance and characterization of these systems. The effects of aliasing and sub-pixel image shifts on the phase of the complex frequency response of these sampled systems are described, including an examination of the specific case of moderate aliasing.
View Article and Find Full Text PDFWe present experimental results of imaging and digital superresolution in a multiaperture miniature folded imaging architecture called PANOPTES. We prove the feasibility of integrating a low f-number folded imagers within a steerable multiaperture framework while maintaining a thin profile. Stringent requirements including low f-number and compact form factor, combined with the need for an ability to steer individual fields of view necessitate an off-axis design, resulting in a plane symmetric optical system.
View Article and Find Full Text PDF