Fast urbanization can result in significant stormwater runoff pollution due to changes in land use. A 3-year study on the distribution and temporal variations of urban water pollutants in stormwater runoff was conducted, with a specific focus on the influence of land-use patterns in the recharge zone of a regional karst aquifer in Texas (Edwards Aquifer). The presence and concentration of various water pollutants including total suspended solids (TSS), total dissolved solids (TDS), nutrients (nitrite, nitrate, ammonia and phosphate), total carbon (TC) and total organic carbon (TOC), oil and grease (O&G), and eight heavy metals (Fe, Mg, Cu, Pb, Zn, Ni, Cr, Cd) were measured in stormwater samples collected from three bioswales.
View Article and Find Full Text PDFThe increasing urbanization and land development poses significant water quality challenges in urban areas. Stormwater control measures, such as bioretention basins, are implemented to mitigate these issues by managing storm volumes and improving water quality. Despite their widespread use, the effectiveness of bioretention basins in removing pollutants, particularly heavy metals and polycyclic aromatic hydrocarbons (PAHs), remains unclear.
View Article and Find Full Text PDFReligious teachings and beliefs often convey an understanding of sexuality that excludes and marginalizes sexually minoritised people. This PRISMA-compliant scoping review selected 29 peer-reviewed papers about the religious disaffiliation of sexually minoritised people for full-text analysis and synthesis. With the use of reflexive thematic and bibliometric analysis, the review found that current research highlights the complicated relationship between religious and LGBTQIA+ identities.
View Article and Find Full Text PDFBioretention basins are extensively used in urban areas to manage stormwater by reducing peak flows and pollution. This study evaluated the performance of a bioretention basin in removing heavy metals, polycyclic aromatic hydrocarbons (PAHs), and oil and grease. Using droplet digital PCR (ddPCR), the presence of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) in the basin's soil was analyzed.
View Article and Find Full Text PDFAims: The aim of this study was to compare the marginal fit of prefabricated occlusal veneers with computer-aided design/computer-aided manufacturing (CAD-CAM)-milled zirconia occlusal veneers in the posterior teeth.
Settings And Design: Forty extracted human maxillary premolars were divided into two groups of 20 each. Group 1 was prepared to receive prefabricated occlusal veneers, and Group 2 was prepared to receive CAD-CAM-milled zirconia occlusal veneers.
Environ Sci Pollut Res Int
October 2023
The Edwards Aquifer is the primary water resource for over 2 million people in Texas and faces challenges including fecal contamination of water recharging the aquifer, while effectiveness of best management practices (BMPs) such as detention basins in mitigating fecal pollution remains poorly understood. For this study, the inlet and outlet of a detention basin overlying the aquifer's recharge zone were sampled following storm events using automated samplers. Microbial source tracking and culture-based methods were used to determine the occurrence and removal of fecal genetic markers and fecal coliform bacteria in collected water samples.
View Article and Find Full Text PDFWastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of WBT measured biomarkers for research activities and for the pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process, introducing the potential for adverse outcomes for WBT professionals and community members.
View Article and Find Full Text PDFStormwater detention basins are used to minimize peak discharges and improve water quality mainly through sedimentation; however, limited studies have evaluated the water quality performance of detention basins located over karst aquifers. Karst aquifers are vital sources of drinking water for many regions of the world and their recharge areas are susceptible to contamination from surface water resources. In this study, an analysis of two stormwater detention basins (namely, Kyle and TPC) located in the recharge zone of one of the most prolific karst aquifers in the world (Edwards Aquifer, San Antonio, Texas), were conducted over a period of one year to quantify the water quality and hydrologic performance of the basins.
View Article and Find Full Text PDFAims: Stormwater detention basins serve as vital components in mitigating the adverse effects of urban runoff, and investigating the microbial dynamics within these systems is crucial for enhancing their performance and pollutant removal capabilities. The aim of this study was to examine and compare the soil bacterial communities in two stormwater detention basins located on the Edwards Aquifer in Bexar County, Texas, USA, and evaluate how soil physiochemical properties may affect them.
Methods And Results: Each basin soil was sampled in two different seasons at varying depths and the structure of microbial communities was examined using paired end Illumina sequencing using V3 and V4 region of 16S rRNA gene.
Unlabelled: Wastewater-based testing (WBT) for SARS-CoV-2 has rapidly expanded over the past three years due to its ability to provide a comprehensive measurement of disease prevalence independent of clinical testing. The development and simultaneous application of the field blurred the boundary between measuring biomarkers for research activities and for pursuit of public health goals, both areas with well-established ethical frameworks. Currently, WBT practitioners do not employ a standardized ethical review process (or associated data management safeguards), introducing the potential for adverse outcomes for WBT professionals and community members.
View Article and Find Full Text PDFFecal pollution of surface waters in the karst-dominated Edwards aquifer is a serious concern as contaminated waters can rapidly transmit to groundwaters, which are used for domestic purposes. Although microbial source tracking (MST) detects sources of fecal pollution, integrating data related to environmental processes (precipitation) and land management practices (septic tanks) with MST can provide better understanding of fecal contamination fluxes to implement effective mitigation strategies. Here, we investigated fecal sources and their spatial origins at recharge and contributing zones of the Edwards aquifer and identified their relationship with nutrients in different environmental/land-use conditions.
View Article and Find Full Text PDFStormwater control measures such as detention basins are used to mitigate the negative effects of urban stormwater resulting from watershed development. In this study, the performance of a detention basin in mitigating nitrogen pollution was examined and the abundance of N-cycling genes (amoA, nirK, nosZ, hzsB and Ntsp-amoA) present in the soil media of the basin was measured using quantitative PCR. Results showed a net export of nitrogen from the basin, however, differences between in- and outflow concentrations were not significant.
View Article and Find Full Text PDFRituals, particularly religious rituals, may play a significant role in times of crises. Often, these rituals undergo revision to adapt to the changing needs of the time. This article investigates recent unofficially revised Hindu religious rituals as performed during the COVID-19 pandemic.
View Article and Find Full Text PDFThe purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery.
View Article and Find Full Text PDFThe COVID-19 pandemic has been challenging for various institutions such as school systems due to widespread closures. As schools re-open their campuses to in-person education, there is a need for frequent screening and monitoring of the virus to ensure the safety of students and staff and to limit risk to the surrounding community. Wastewater surveillance (WWS) of SARS-CoV-2 is a rapid and economical approach to determine the extent of COVID-19 in the community.
View Article and Find Full Text PDFThe purpose of this study was to conduct a preliminary assessment of the levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater at the Salitrillo Wastewater Treatment Plant in Texas during the initial peak of coronavirus disease 2019 (COVID-19) outbreak. Raw wastewater influent (24 h composite, time-based 1 L samples, = 13) was collected weekly during June-August 2020. We measured SARS-CoV-2 RNA in wastewater by reverse transcription droplet digital PCR using the same N1 and N2 primer sets as employed in COVID-19 clinical testing.
View Article and Find Full Text PDFThe short-term effects of MnO nanoparticles (NPs) were examined for nitrifying bacterial enrichments exposed under low and high dissolved oxygen (DO) conditions using substrate (ammonia) specific oxygen uptake rates (sOUR), reverse transcriptase - quantitative polymerase chain reaction (RT-qPCR) assays, and by analysis of 16S rRNA sequences. Samples from nitrifying bioreactor were exposed in batch vessels to MnO NPs (1, 5 and 10 mg/L) for either 1 or 3 h under no additional aeration or 0.25 L/min aeration.
View Article and Find Full Text PDFThe Edwards Aquifer serves as a primary source of drinking water to more than 2 million people in south-central Texas, and as a karst aquifer, is vulnerable to human and animal fecal contamination which poses a serious risk to human and environmental health. A one-year study (Jan 2018 - Feb 2019) was conducted to determine the primary sources of fecal pollution along the Balcones and Leon Creek within the Edwards Aquifer recharge and contributing zones using general (E. coli, enterococci, and universal Bacteriodales) and host-associated (human-, dog-, cow- and chicken/duck-associated Bacteriodales) microbial source tracking (MST) assays.
View Article and Find Full Text PDFHuman mitochondrial DNA (mtDNA) genetic markers are abundant in sewage and highly human-specific, suggesting a great potential for the environmental application as human fecal pollution indicators. Limited data are available on the occurrence and co-occurrence of human mtDNA with fecal bacterial markers in surface waters, and how the abundance of these markers is influenced by rain events. A 1-year sampling study was conducted in a suburban watershed impacted by human sewage contamination to evaluate the performance of a human mtDNA-based marker along with the bacterial genetic markers for human-associated Bacteroidales (BacHum and HF183) and Escherichia coli.
View Article and Find Full Text PDFAim: The accurate placement of implants in mandible requires consideration for angulations of the bone along with the vertical dimensions. The aim of this present study was to assess the variation of mandibular anatomy using computed tomography (CT) radiography and to evaluate the effect of presence and absence of teeth on the mandibular anatomy before planning an implant surgery.
Materials And Methods: The present population-based retrospective study was conducted using 167 digital CT scan images those selected from departmental archives.
Conventional biological nitrogen removal (BNR), comprised of nitrification and denitrification, is traditionally employed in wastewater treatment plants (WWTPs) to prevent eutrophication in receiving water bodies. More recently, the combination of selective ammonia to nitrite oxidation (nitritation) and autotrophic anaerobic ammonia oxidation (anammox), collectively termed deammonification, has also emerged as a possible energy- and cost-effective BNR alternative. Herein, we analyzed microbial diversity and functional potential within 13 BNR processes in the United States, Denmark, and Singapore operated with varying reactor configuration, design, and operational parameters.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2018
While the variety of engineered nanoparticles used in consumer products continues to grow, the use of metal oxide nanoparticles in electronics, textiles, cosmetics and food packaging industry has grown exponentially in recent years, which will inevitably result in their release into wastewater streams in turn impacting the important biological processes in wastewater treatment plants. Among these processes, nitrification play a critical role in nitrogen removal during wastewater treatment, however, it is sensitive to a wide range of inhibitory substances including metal oxide nanoparticles. Therefore, it is essential to systematically asses the effects of metal oxide nanoparticles on nitrification in biological wastewater treatment systems.
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2018
Complete ammonia oxidation (comammox) to nitrate by certain Nitrospira-lineage bacteria (CMX) could contribute to overall nitrogen cycling in engineered biological nitrogen removal (BNR) processes in addition to the more well-documented nitrogen transformations by ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and anaerobic ammonia-oxidizing (anammox) bacteria (AMX). A metagenomic survey was conducted to quantify the presence and elucidate the potential functionality of CMX in 16 full-scale BNR configurations treating mainstream or sidestream wastewater. CMX proposed to date were combined with previously published AOB, NOB, and AMX genomes to create an expanded database for alignment of metagenomic reads.
View Article and Find Full Text PDFAnaerobic ammonia oxidation (anammox) combined with partial nitritation (PN) is an innovative treatment process for energy-efficient nitrogen removal from wastewater. In this study, we used genome-based metagenomics to investigate the overall community structure and anammox species enriched in suspended growth (SGR) and attached growth packed-bed (AGR) anammox reactors after 220 days of operation. Both reactors removed more than 85% of the total inorganic nitrogen.
View Article and Find Full Text PDF