Publications by authors named "Viko Ladelta"

Well-defined multicrystalline multiblock polymers are essential model polymers for advancing crystallization physics, phase separation, self-assembly, and improving the mechanical properties of materials. However, due to different chain properties and incompatible synthetic methodologies, multicrystalline multiblock polymers with more than two crystallites are rarely reported. Herein, by combining polyhomologation, ring-opening polymerization, and catalyst switch strategy, we synthesized a pentacrystalline pentablock quintopolymer, polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(L-lactide)-b-polyglycolide (PE-b-PEO-b-PCL-b-PLLA-b-PGA).

View Article and Find Full Text PDF

Ring-opening polymerization (ROP) is a promising approach to accessing well-defined polyesters with superior (bio)degradability and recyclability. However, the living/controlled polymerization of glycolide (GL), a well-known sustainable monomer derived from carbon monoxide/dioxide, has never been reported due to the extremely low solubility of its polymer in common solvents. Herein, we report the first living/controlled anionic ROP of GL in strong protic fluoroalcohols (FAs), which are conventionally considered incompatible with anionic polymerization.

View Article and Find Full Text PDF

Poly(2-oxazoline)s (POxs) are promising platforms for drug delivery applications due to their biocompatibility and stealth properties. In addition, the use of core cross-linked star (CCS) polymers based on POxs is expected to enhance drug encapsulation and release performances. In this study, we employed the "arm-first" strategy to synthesize a series of amphiphilic CCS [poly(2-methyl-2-oxazoline)]--poly(2,2'-(1,4-phenylene)bis-2-oxazoline)-cross-link/copolymer-(2--butyl-2-oxazoline)s (PMeOx)--P(PhBisOx-/-ButOx)s by using microwave-assisted cationic ring-opening polymerization (CROP).

View Article and Find Full Text PDF

Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture.

View Article and Find Full Text PDF

Solvent-solvent and solvent-anion pairings in battery electrolytes have been identified for the first time by nuclear magnetic resonance spectroscopy. These hitherto unknown interactions are enabled by the hydrogen bonding induced by the strong Lewis acid Li , and exist between the electron-deficient hydrogen (δ H) present in the solvent molecules and either other solvent molecules or negatively-charged anions. Complementary with the well-established strong but short-ranged Coulombic interactions between cation and solvent molecules, such weaker but longer-ranged hydrogen-bonding casts the formation of an extended liquid structure in electrolytes that is influenced by their components (solvents, additives, salts, and concentration), which in turn dictates the ion transport within bulk electrolytes and across the electrolyte-electrode interfaces.

View Article and Find Full Text PDF

Polylactides (PLAs) are thermoplastic materials known for their wide range of applications. Moreover, the equimolar mixtures of poly(L-Lactide) (PLLA) and poly(D-Lactide) (PDLA) can form stereocomplexes (SCs), which leads to the formation of new non-covalent complex macromolecular architectures. In this work, we report the synthesis and characterization of non-covalent triblock terpolymers of polystyrene--stereocomplex PLA--poly(2-vinylpyridine) (PS--SC--P2VP).

View Article and Find Full Text PDF

We investigate for the first time the morphology and crystallization of two novel tetrablock quarterpolymers of polyethylene (PE), poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA) with four potentially crystallizable blocks: PE PEO PCL PLLA (Q1) and PE PEO PCL PLLA (Q2) (superscripts give number average molecular weights in kg/mol, and subscripts give the composition in wt %). Their synthesis was performed by a combination of polyhomologation (C1 polymerization) and ring-opening polymerization techniques using a ″catalyst-switch″ strategy, either ″organocatalyst/metal catalyst switch″ (Q1 sample, 96% isotactic tetrads) or ″organocatalyst/organocatalyst switch″ (Q2 sample, 84% isotactic tetrads). Their corresponding precursors-triblock terpolymers PEPEOPCL, diblock copolymers PEPEO, and PE homopolymers-were also studied.

View Article and Find Full Text PDF

Fluorescent drug delivery systems have received increasing attention in cancer therapy because they combine drug delivery and bioimaging into a single platform. For example, polymers with aggregation-induced emission (AIE) fluorophores, such as tetraphenylethylene (TPE), have emerged as an elegant choice for drug delivery/bioimaging applications. In this work, we report one-pot sequential organocatalytic ring-opening polymerization of ε-caprolactone (CL) and ethylene oxide (EO) using TPE-(OH) as a difunctional initiator, in the presence of a -BuP/TEB Lewis pair (catalyst), in THF at room temperature.

View Article and Find Full Text PDF

The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE--PEO--PCL (T1) and PE--PEO--PCL (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers.

View Article and Find Full Text PDF

Multicrystalline block polymers having three or more crystalline segments are essential materials for the advancement of physics in the field of crystallinity. The challenging synthesis of multicrystalline polymers has resulted in only a limited number of tricrystalline terpolymers having been reported to date. We report, for the first time, the synthesis of polyethylene-b-poly(ethylene oxide)-b-poly(ϵ-caprolactone)-b-poly(l-lactide) (PE-b-PEO-b-PCL-b-PLLA), a tetracrystalline tetrablock quarterpolymer, by combining polyhomologation, ring-opening polymerization, and an organic/metal "catalyst switch" strategy.

View Article and Find Full Text PDF