Cardiac monitoring after heart surgeries is crucial for health maintenance and detecting postoperative complications early. However, current methods like rigid implants have limitations, as they require performing second complex surgeries for removal, increasing infection and inflammation risks, thus prompting research for improved sensing monitoring technologies. Herein, we introduce a nanosensor platform that is biodegradable, biocompatible, and integrated with multifunctions, suitable for use as implants for cardiac monitoring.
View Article and Find Full Text PDFOn the surface of chemiresistive films, the scarce heterogeneity of a molecularly capped gold nanoparticle (MCGNP) colloidal dispersion and uneven evaporation of the MCGNP-contained drying drop applied to this surface are among the main factors that affect reproducibility, and repeatable fabrication of thin films of MCGNPs. This article shows that an increase in reproducibility and repeatability is possible using a dispersant and a surfactant during the deposition and annealing processes of the MCGNP. The results show higher sensitivity and accuracy of the sensors for the detection of volatile organic compounds in air and an increased limit of detection.
View Article and Find Full Text PDFRecent years have witnessed thriving progress of flexible and portable electronics, with very high demand for cost-effective and tailor-made multifunctional devices. Here, we report on an ingenious origami hierarchical sensor array (OHSA) written with a conductive ink. Thanks to origami as a controllable hierarchical framework for loading ink material, we have demonstrated that OHSA possesses unique time-space-resolved, high-discriminative pattern recognition (TSR-HDPR) features, qualifying it as a smart sensing device for simultaneous sensing and distinguishing of complex physical and chemical stimuli, including temperature, relative humidity, light and volatile organic compounds (VOCs).
View Article and Find Full Text PDFUsing direct multiexcitonic spectroscopy, we experimentally observe for the first time the non-Poissonian formation of multiple excitons by femtosecond nonresonant two-photon absorption process in semiconductor colloidal quantum dots (QDs). Each of the multiple excitons is individually generated via the absorption of a pair of photons during the femtosecond pulse irradiation. The non-Poissonian distribution of the generated excitons is reflected as a non-quadratic dependence on the pulse intensity of the average number of excitons per QD.
View Article and Find Full Text PDFSingle-exciton, biexciton, triexciton, and quadraexciton bands were resolved in the microphotoluminescence spectrum of a single CdTe/CdSe core-shell colloidal quantum dot, revealing nearly blinking-free behavior. Multiexcitons were generated by a sequential filling of electronic shells with the increase of a continuous-wave excitation power, and their probability was evaluated under steady-state conditions. A partial carriers' delocalization was determined at the core-shell interface, and an exciton binding energy was estimated by a second-order perturbation theory.
View Article and Find Full Text PDF