Differential evolution (DE) is a robust evolutionary algorithm for solving single-objective and multi-objective optimization problems (MOPs). While numerous multi-objective DE (MODE) variants exist, prior research has primarily focused on parameter control and mutation operators, often neglecting the issue of inadequate population distribution across the objective space. This paper proposes an external archive-guided radial-grid-driven differential evolution for multi-objective optimization (Ar-RGDEMO) to address these challenges.
View Article and Find Full Text PDF