Publications by authors named "Vikas Dutt"

Inflammation is the primary driver of skeletal muscle wasting, with oxidative stress serving as both a major consequence and a contributor to its deleterious effects. In this regard, regulation of both can efficiently prevent atrophy and thus will increase the rate of survival [1]. With this idea, we hypothesize that preincubation of Cinnamaldehyde (CNA), a known compound with anti-oxidative and anti-inflammatory properties, may be able to prevent skeletal muscle loss.

View Article and Find Full Text PDF

Background: Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy.

View Article and Find Full Text PDF

Ethanopharmacological Relevance: Tinospora cordifolia (TC) is widely being used as immunomodulatory and re-juvenile drug and well described in Indian Ayurveda system of medicine. Rejuvenation also means the fine tuning of the skeletal muscles. Skeletal muscle related disorder, i.

View Article and Find Full Text PDF

Background: Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic (Allium sativum), has established anti-oxidant and anti-inflammatory effects in various cell types.

View Article and Find Full Text PDF

Over the last two decades, new insights into the etiology of skeletal muscle wasting/atrophy under diverse clinical settings including denervation, AIDS, cancer, diabetes, and chronic heart failure have been reported in the literature. However, the treatment of skeletal muscle wasting remains an unresolved challenge to this day. About nineteen potential drugs that can regulate loss of muscle mass have been reported in the literature.

View Article and Find Full Text PDF