Publications by authors named "Vikas Bhandawat"

Two simple models - vaulting over stiff legs and rebounding over compliant legs - are employed to describe the mechanics of legged locomotion. It is agreed that compliant legs are necessary for describing running and that legs are compliant while walking. Despite this agreement, stiff legs continue to be employed to model walking.

View Article and Find Full Text PDF

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in , a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression.

View Article and Find Full Text PDF

Projection neurons that communicate between different brain regions and local neurons that shape computation within a brain region form the majority of all neurons in the brain. Another important class of neurons is neuromodulatory neurons; these neurons are in much smaller numbers than projection/local neurons but have a large influence on computations in the brain. Neuromodulatory neurons are classified by the neurotransmitters they carry, such as dopamine and serotonin.

View Article and Find Full Text PDF

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression.

View Article and Find Full Text PDF

Most real-world behaviors - such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes in Drosophila by optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion.

View Article and Find Full Text PDF

Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them.

View Article and Find Full Text PDF

Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation.

View Article and Find Full Text PDF

Changes in walking speed are characterized by changes in both the animal's gait and the mechanics of its interaction with the ground. Here we study these changes in walking . We measured the fly's center of mass movement with high spatial resolution and the position of its footprints.

View Article and Find Full Text PDF

Mechanisms that control movements range from navigational mechanisms, in which the animal employs directional cues to reach a specific destination, to search movements during which there are little or no environmental cues. Even though most real-world movements result from an interplay between these mechanisms, an experimental system and theoretical framework for the study of interplay of these mechanisms is not available. Here, we rectify this deficit.

View Article and Find Full Text PDF

Despite the overall complexity of legged locomotion, the motion of the center of mass (COM) itself is relatively simple, and can be qualitatively described by simple mechanical models. In particular, walking can be qualitatively modeled by a simple model in which each leg is described by a spring-loaded inverted pendulum (SLIP). However, SLIP has many limitations and is unlikely to serve as a quantitative model.

View Article and Find Full Text PDF

Most behaviors such as making tea are not stereotypical but have an obvious structure. However, analytical methods to objectively extract structure from non-stereotyped behaviors are immature. In this study, we analyze the locomotion of fruit flies and show that this non-stereotyped behavior is well-described by a Hierarchical Hidden Markov Model (HHMM).

View Article and Find Full Text PDF

Locomotion involves complex interactions between an organism and its environment. Despite these complex interactions, many characteristics of the motion of an animal's center of mass (COM) can be modeled using simple mechanical models such as inverted pendulum (IP) and spring-loaded inverted pendulum (SLIP) which employ a single effective leg to model an animal's COM. However, because these models are simple, they also have many limitations.

View Article and Find Full Text PDF

Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain.

View Article and Find Full Text PDF

All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation.

View Article and Find Full Text PDF

Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior.

View Article and Find Full Text PDF

Freely flying Drosophila melanogaster respond to odors by increasing their flight speed and turning upwind. Both these flight behaviors can be recapitulated in a tethered fly, which permits the odor stimulus to be precisely controlled. In this study, we investigated the relationship between these behaviors and odor-evoked activity in primary sensory neurons.

View Article and Find Full Text PDF

An important contributing factor for the high sensitivity of sensory systems is the exquisite sensitivity of the sensory receptor cells. We report here the signaling threshold of the olfactory receptor neuron (ORN). We first obtained a best estimate of the size of the physiological electrical response successfully triggered by a single odorant-binding event on a frog ORN, which was ∼0.

View Article and Find Full Text PDF

In many regions of the visual system, the activity of a neuron is normalized by the activity of other neurons in the same region. Here we show that a similar normalization occurs during olfactory processing in the Drosophila antennal lobe. We exploit the orderly anatomy of this circuit to independently manipulate feedforward and lateral input to second-order projection neurons (PNs).

View Article and Find Full Text PDF

Sensory receptors transduce physical stimuli in the environment into neural signals that are interpreted by the brain. Although considerable attention has been given to how the sensitivity and dynamic range of sensory receptors is established, peripheral synaptic interactions improve the fidelity with which receptor output is transferred to the brain. For instance, synapses in the retina, cochlea, and primary olfactory system use mechanisms that fine-tune the responsiveness of postsynaptic neurons and the dynamics of exocytosis; these permit microcircuit interactions to encode efficiently the output of sensory receptors with the fidelity and dynamic range necessary to extract the salient features of the physical stimuli.

View Article and Find Full Text PDF

Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli. Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset.

View Article and Find Full Text PDF

Each odorant receptor gene defines a unique type of olfactory receptor neuron (ORN) and a corresponding type of second-order neuron. Because each odor can activate multiple ORN types, information must ultimately be integrated across these processing channels to form a unified percept. Here, we show that, in Drosophila, integration begins at the level of second-order projection neurons (PNs).

View Article and Find Full Text PDF

Signaling by heterotrimeric GTP-binding proteins (G proteins) drives numerous cellular processes. The number of G protein molecules activated by a single membrane receptor is a determinant of signal amplification, although in most cases this parameter remains unknown. In retinal rod photoreceptors, a long-lived photoisomerized rhodopsin molecule activates many G protein molecules (transducins), yielding substantial amplification and a large elementary (single-photon) response, before rhodopsin activity is terminated.

View Article and Find Full Text PDF