Metab Brain Dis
November 2024
Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD).
View Article and Find Full Text PDFFresh water is one of the essential sources of life, and its requirement has increased in the past years due to population growth and industrialization. Industries use huge quantities of fresh water for their processes, and generate high quantities of wastewater rich in organic matter, nitrates, and phosphates. These effluents have contaminated the freshwater sources and there is a need to recycle this wastewater in an ecologically harmless manner.
View Article and Find Full Text PDFThe inexorable industrialization and modern agricultural practices to meet the needs of the increasing population have polluted the environment with toxic heavy metals such as Cr(VI), Cu, Cd, Pb and Zn. Among the hazardous heavy metal(loid)s contamination in agricultural soil, water, and air, hexavalent chromium [Cr(VI)] is the most virulent carcinogen. The metallurgic industries, tanneries, paint manufacturing, petroleum refineries are among various such human activities that discharge Cr(VI) into the environment.
View Article and Find Full Text PDFSurface modification of nanoparticles for biological applications is receiving enormous interest among the research community due to the ability to alchemy the toxic nanoparticles into biocompatible compounds. In this study, the agrowastes of and were used to surface modify the magnesium oxide nanoparticles and ferric oxide nanoparticles respectively. The agrowaste amended magnesium oxide nano particles (AMNP) and agrowaste amended ferric oxide nanoparticles (AFNP) were characterized using scanning electron microscope, X-ray diffractometer, Fourier transformed-infra red spectroscope to justify the formation and surface modification of nanoparticles with the organic functional groups from the agro wastes.
View Article and Find Full Text PDF