Publications by authors named "Vijayendra Dasari"

The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8 T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice.

View Article and Find Full Text PDF

There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) infects more than 95% of the world's population and is associated with infectious mononucleosis as well as a number of cancers in various geographical locations. Despite its significant health burden, no licenced prophylactic or therapeutic vaccines are available. Areas covered: Over the last two decades, our understanding of the role of EBV infection in the pathogenesis and immune regulation of EBV-associated diseases has provided new lines of research to conceptualize various novel prophylactic and therapeutic approaches to control EBV-associated disease.

View Article and Find Full Text PDF

Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8 T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving , , , , and lower , increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with a number of clinical manifestations. Primary EBV infection in young adolescents often manifests as acute infectious mononucleosis and latent infection is associated with multiple lymphoid and epithelial cancers and autoimmune disorders, particularly multiple sclerosis. Areas covered: Over the last decade, our understanding of pathogenesis and immune regulation of EBV-associated diseases has provided an important platform for the development of novel vaccine formulations.

View Article and Find Full Text PDF

Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP) as a tool for rapid generation of multivirus-specific T-cells in a single step.

View Article and Find Full Text PDF

Cross-presentation of exogenous protein antigens by B cells through the major histocompatibility complex (MHC) class I pathway in lymphoid malignancies, and transplant setting has been recognised as an important mediator of immune pathogenesis and T cell-mediated immune regulation. However, the precise mechanism of cross-presentation of exogenous antigens in B cells has remained unresolved. Here we have delineated a novel pathway for cross-presentation in B cells, which involves synergistic cooperation of the proteasome and autophagy.

View Article and Find Full Text PDF

Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells.

View Article and Find Full Text PDF

Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most aggressive human brain malignancies. Even with optimal treatment, median survival is less than 6 months for patients with recurrent GBM. Immune-based therapies have the potential to improve patient outcome by supplementing standard treatment.

View Article and Find Full Text PDF

Recent studies have suggested that a successful subunit human cytomegalovirus (CMV) vaccine requires improved formulation to generate broad-based anti-viral immunity following immunization. Here we report the development of a non-live protein-based vaccine strategy for CMV based on a polyepitope protein and CMV glycoprotein B (gB) adjuvanted with TLR4 and/or TLR9 agonists. The polyepitope protein includes contiguous multiple MHC class I-restricted epitopes with an aim to induce CD8(+) T cell immunity, while gB is an important target for CD4(+) T cell immunity and neutralizing antibodies.

View Article and Find Full Text PDF

It is now well over a decade since the US Institute of Medicine of the National Academy of Sciences assigned the highest priority for a vaccine to prevent congenital human CMV infection, which was subsequently endorsed by the US National Vaccine Program Office. In spite of extensive efforts over many years, successful licensure of a CMV vaccine formulation remains elusive. While the understanding of immune regulation of CMV infection in healthy virus carriers and diseased patients has dramatically improved, traditional vaccine development programs have failed to exploit this knowledge.

View Article and Find Full Text PDF

T-box transcription factors T-bet (Tbx21) and Eomesodermin (Eomes) are critical players in CD8(+) cytotoxic T lymphocyte effector function and differentiation, but how the expression of these transcription factors is regulated remains poorly defined. Here we show that dominant T cells directed toward human CMV, expressing significantly higher levels of T-bet with graded loss of Eomes expression (T-bet(hi)Eomes(hi/lo)), are more efficient in recognizing endogenously processed peptide-major histocompatibility complexes (pMHC) compared with subdominant virus-specific T cells expressing lower levels of T-bet and high levels of Eomes (T-bet(int)Eomes(hi)). Paradoxically, the T-bet(hi)Eomes(hi/lo) dominant populations that efficiently recognized endogenous antigen demonstrated lower intrinsic avidity for pMHC, whereas T-bet(int)Eomes(hi) subdominant populations were characterized by higher pMHC avidity and less efficient recognition of virus-infected cells.

View Article and Find Full Text PDF

Natural human cytomegalovirus (CMV) infection is characterized by a strain-specific neutralizing antibody response. This is particularly relevant in clinical settings such as transplantation and pregnancy where reinfection with heterologous strains occurs and the immune system does not mount an effective response against the infecting strain due to underlying immunosuppression. There is an emerging argument that a CMV vaccine that induces high titres of cross-neutralizing antibodies will be more effective in protecting individuals from infection with antigenically different CMV strains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbbadcqd32iu1aurfjep0rclhg6br1chr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once