Cerium oxide nanoparticles (CONPs) have a unique surface redox chemistry that appears to selectively protect normal tissues from radiation induced damage. Our prior research exploring the biocompatibility of polymer-coated CONPs found further study of poly-acrylic acid (PAA)-coated CONPs was warranted due to improved systemic biodistribution and rapid renal clearance. This work further explores PAA-CONPs' radioprotective efficacy and mechanism of action related to tumor microenvironment pH.
View Article and Find Full Text PDFSpecific facial features in infants automatically elicit attention, affection, and nurturing behaviour of adults, known as the baby schema effect. There is also an innate tendency to categorize people into in-group and out-group members based on salient features such as ethnicity. Societies are becoming increasingly multi-cultural and multi-ethnic, and there are limited investigations into the underlying neural mechanism of the baby schema effect in a multi-ethnic context.
View Article and Find Full Text PDFMagnetoencephalography (MEG) plays a pivotal role in the diagnosis of brain disorders. In this review, we have investigated potential MEG applications for analysing brain disorders. The signal-to-noise ratio (SNRMEG = 2.
View Article and Find Full Text PDFThis review is extensively focused on the enhancement of cognitive functions while performing physical exercises categorized into cardiovascular exercises, resistance training, martial arts, racquet sports, dancing and mind-body exercises. Imaging modalities, viz. functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), have been included in this review.
View Article and Find Full Text PDFFunctional Near-Infrared Spectroscopy (fNIRS) is a wearable optical spectroscopy system originally developed for continuous and non-invasive monitoring of brain function by measuring blood oxygen concentration. Recent advancements in brain-computer interfacing allow us to control the neuron function of the brain by combining it with fNIRS to regulate cognitive function. In this review manuscript, we provide information regarding current advancement in fNIRS and how it provides advantages in developing brain-computer interfacing to enable neuron function.
View Article and Find Full Text PDFOne of the most severe diseases threatening the ageing population is Alzheimer's disease (AD). Recent studies found that the cellular uptake of extracellular amyloid beta (Aβ) peptides can lead to a build-up of intracellular Aβ in certain neuronal cells, which consequently lead to the onset of AD pathogenesis. It is therefore hypothesized that the detection of cells that are involved in such Aβ uptake could facilitate the early diagnosis of AD.
View Article and Find Full Text PDFIn this communication, we report the synthesis of small-sized (<10 nm), water-soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS-coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51-53 emu g(-1)) comparable to silica-coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF-7 human breast epithelial cells.
View Article and Find Full Text PDFAm J Nucl Med Mol Imaging
September 2014
Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [(59)Fe]-superparamagnetic iron oxide nanoparticles ([(59)Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. (59)Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [(59)Fe]-SPIONs.
View Article and Find Full Text PDFThe current work reports a type of "smart" lanthanide-based theranostic nanoprobe, NaDyF4:Yb(3+)/NaGdF4:Yb(3+),Er(3+), which is able to circumvent the up-converting poisoning effect of Dy(3+) ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.
View Article and Find Full Text PDFTo properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.
View Article and Find Full Text PDFThe aim of the current study was to assess the ability of PET imaging agents to detect early response to therapy in an orthotopic experimental rodent model of glioma. Clinically, MRI and [(18)F]FDG PET are routinely used but their ability to assess early therapeutic response can be limited. In this study, nude rats were implanted with U87-MG tumors orthotopically and imaged with either [(18)F]FDG or [(18)F]FLT to determine which tracer acts as the most sensitive biomarker for evaluation of treatment response in animals undergoing anti-angiogenic therapy with sunitinib, a receptor tyrosine kinase (RTK) inhibitor.
View Article and Find Full Text PDFThe fluorescent probes having complete spectral separation between absorption and emission spectra (large Stokes shift) are highly useful for solar concentrators and bioimaging. In bioimaging application, NIR fluorescent dyes have a greater advantage in tissue penetration depth compared to visible-emitting organic dyes or inorganic quantum dots. Here we report the design, synthesis, and characterization of an amphiphilic polymer, poly(isobutylene-alt-maleic anhyride)-functionalized near-infrared (NIR) IR-820 dye and its conjugates with iron oxide (Fe3O4) magnetic nanoparticles (MNPs) for optical and magnetic resonance (MR) imaging.
View Article and Find Full Text PDFWe report ultrasensitive sub-10 nm NaMnF(3) nanocrystals codoped with Yb(3+), Er(3+)/Tm(3+) ions, and their intense pure red and near-infrared upconversion emissions in the presence of Mn(2+). The nanocrystals showed excellent T(1) contrast in 7 T MRI, implying their potential as single-phase contrast agents for fluorescent deep tissue and MR imaging.
View Article and Find Full Text PDF