Publications by authors named "Vijayanand S Moholkar"

In this paper, we have analyzed biodesulfurization of dibenzothiophene (DBT) and 4,6-dibenzothiophene (4,6-DMDBT) by 4S metabolic pathway using molecular simulations. Docking analysis revealed lower binding energies and inhibition constants () for 4,6-DMDBT and its metabolic intermediates with DSZ enzymes than DBT and its intermediates. The complexes of substrate and its metabolites with DSZ enzymes had higher stability for 4,6-DMDBT than DBT owing to lower RMSF values than apoprotein.

View Article and Find Full Text PDF

Bacteria from diverse genera, including Acetivibrio, Bacillus, Cellulosilyticum, Clostridium, Desulfotomaculum, Lachnoclostridium, Moorella, Ruminiclostridium, and Thermoanaerobacterium, have attracted significant attention due to their versatile metabolic capabilities encompassing acetogenic, cellulolytic, and C-metabolic properties, and acetone-butanol-ethanol fermentation. Despite their biotechnological significance, a comprehensive understanding of clostridial physiology and evolution has remained elusive. This study reports an extensive comparative genomic analysis of 48 fully sequenced bacterial genomes from these genera.

View Article and Find Full Text PDF

This study reports the synthesis of methylene bisacrylamide (MBA) crosslinked cellulose-kaolin (CMK) composite hydrogels. The internal structures of hydrogels were deduced using network parameters, viz. elastic modulus, average molecular weight, mesh size, and effective crosslink.

View Article and Find Full Text PDF

In this study, nanocomposites of polylactic acid (PLA) with clove essential oil (CEO) and alkali treated halloysite nanotubes (NHNT) as fillers were synthesized by using simple solvent casting method. The treatment of halloysite nanotubes with NaOH increased the surface area from 50.16 m⋅g to 57.

View Article and Find Full Text PDF

This paper reports the degradation of the sulfadiazine (SDZ) drug with a hybrid advanced oxidation process (AOP) of heterogeneous α-FeO/persulfate coupled with hydrodynamic cavitation. The major objectives of the study are parametric optimization of the process and elucidation of the chemical mechanism of degradation. The optimum conditions for maximum SDZ degradation of 93.

View Article and Find Full Text PDF

Commercial application of supercapacitors (SCs) requires high mass loading electrodes simultaneously with high energy density and long cycle life. Herein, we have reported a ternary multi-walled carbon nanotube (MWCNT)/MnO/reduced graphene oxide (rGO) nanocomposite for SCs with commercial-level mass loadings. The ternary nanocomposite was synthesized using a facile ultrasound-assisted one-pot method.

View Article and Find Full Text PDF

The present study has investigated p-nitrophenol (PNP) degradation by hybrid advanced oxidation process (AOP) of hydrodynamic cavitation with heterogenous FeO nanoparticles. 78.8 ± 1.

View Article and Find Full Text PDF

Sugarcane bagasse (SB) and sugarcane trash (SCT) containing 30% hemicellulose content are the waste from the sugarcane industry. Hemicellulose being heterogeneous, more complex, and less abundant than cellulose remains less explored. The optimized conditions for the pretreatment of SB and SCT for maximizing the delignification are soaking in aqueous ammonia (SAA), 18.

View Article and Find Full Text PDF

Xylan is the major hemicellulose present in sugarcane stem secondary cell walls. Xylan is composed of xylose backbone with a high degree of substitutions, which affects its properties. In the present study, the xylan from sugarcane tops (SCT) was extracted and characterized.

View Article and Find Full Text PDF

In the present study, the cellulose from sugarcane tops (SCT) was separated and characterized for its purity. Approximately, 85% (w/w) of total cellulose present in raw SCT was recovered by using alkaline method. The monosaccharide analysis of SCT cellulose by HPLC showed 91% D-glucose, 7.

View Article and Find Full Text PDF

Xylan extracted from neem sawdust gave 22.5%, (w/w) yield. The extracted xylan was composed of xylose and glucuronic acid at a molar ratio of 8:1 and with a molecular mass, ~66 kDa.

View Article and Find Full Text PDF

Over the past two decades, birchwood and beechwood xylans have been used as a popular substrate for the characterization of xylanases. Recently, major companies have discontinued their commercial production. Therefore, there is a need to find an alternative to these substrates.

View Article and Find Full Text PDF

Optimization of pretreatment and saccharification of stalk (Sds) was carried out. The chimeric enzyme (GH1-L1-GH5-F194A) having β-glucosidase (GH1) and endo β-1,4 glucanase activity (GH5-F194A) and cellobiohydrolase (CBH5A) from were used for saccharification. Chimeric enzyme will save production cost of two enzymes, individually.

View Article and Find Full Text PDF

Sonication is known to enhance crystallization of lactose from aqueous solutions. This study has attempted to reveal the mechanistic features of antisolvent crystallization of lactose monohydrate from aqueous solutions. Experiments were conducted in three protocols, viz.

View Article and Find Full Text PDF

This study has addressed the biodegradation of polycyclic aromatic hydrocarbon, phenanthrene using Candida tropicalis. Optimization using central composite statistical design yielded optimum experimental parameters as: pH = 6.2, temperature = 33.

View Article and Find Full Text PDF

Microalgae constitute relatively novel source of lipids for biodiesel production. The economy of this process can be enhanced by the recovery of β-carotenes present in the microalgal cells. The present study has addressed matter of enhancement of lipids and β-carotene production by microalgal species of Tetradesmus obliquus SGM19 with the application of sonication.

View Article and Find Full Text PDF

This study focuses on enzymatic saccharification of hemicellulose part of the pretreated Finger millet straw (FMS) for production of xylose. The variation in the carbohydrate composition of FMS was analysed when subjected to different pretreatments. The recombinant endo-1,4-β-xylanase (CtXyn11A) was most active on the FMS pretreated with 1% (w/v) NaOH combined with oven heating at 120 °C for 20 min, resulting in a total reducing sugar yield (TRS) of 32 mg/g pretreated biomass.

View Article and Find Full Text PDF

This study reports engineering of a hypertransformable variant of C. pasteurianum for bioconversion of glycerol into hydrogen (H). A functional glycerol-triggered hydrogen pathway was engineered based on two approaches: (1) increasing product yield by overexpression of immediate enzyme catalyzing H production, (2) increasing substrate uptake by overexpression of enzymes involved in glycerol utilization.

View Article and Find Full Text PDF

Site-directed mutagenesis of β-1,4-endoglucanase from family 5 glycoside hydrolase (CtGH5) from Clostridium thermocellum was performed to develop a mutant CtGH5-F194A that gave 40 U/mg specific activity against carboxymethyl cellulose, resulting 2-fold higher activity than wild-type CtGH5. CtGH5-F194A was fused with a β-1,4-glucosidase, CtGH1 from Clostridium thermocellum to develop a chimeric enzyme. The chimera (CtGH1-L1-CtGH5-F194A) expressed as a soluble protein using E.

View Article and Find Full Text PDF

In the present study, the ultrasound-assisted biodiesel production from mixed feedstock of non-edible oils in presence of KI impregnated ZnO as a catalyst in batch reactor was investigated. The production was optimized by using two approaches (1) feedstock optimization and (2) process parameters optimization. Various non-edible oils at optimum volumetric ratio were blended and used as feedstock for transesterification reaction.

View Article and Find Full Text PDF

This study reports an ultrasound-assisted Acetone-Butanol-Ethanol (ABE) fermentation process using Clostridium acetobutylicum MTCC 11,274 and mixed feedstock consisting of eight highly invasive weeds. Composite (pentose + hexose) hydrolyzate was fermented with sonication at 35 kHz and 10% duty cycle (test) and mechanical agitation at 150 rpm (control). Net solvent yield with sonication was 0.

View Article and Find Full Text PDF

Invasive weeds ubiquitously found in terrestrial and aquatic ecosystems form potential feedstock for lignocellulosic ethanol production. The present study has reported a bioprocess for production of ethanol using mixed feedstock of 8 invasive weeds found in India. The feedstock was subjected to pretreatment comprising dilute acid hydrolysis (for hydrolysis of hemicellulosic fraction), alkaline delignification and enzymatic hydrolysis of cellulosic fraction.

View Article and Find Full Text PDF

This study investigates ultrasonic enhancement of xylitol production from sugarcane bagasse using C. tropicalis MTCC 184 immobilized on PU foam. Initial xylitol yield of 0.

View Article and Find Full Text PDF

This study has investigated ultrasound-assisted xylitol production through fermentation of dilute acid (pentose-rich) hydrolysate of sugarcane bagasse using free cells of Candida tropicalis. Sonication of fermentation mixture at optimum conditions was carried out in ultrasound bath (37 kHz and 10% duty cycle). Time profiles of substrate and product in control (mechanical shaking) and test (mechanical shaking + sonication) fermentations were fitted to kinetic model using Genetic Algorithm (GA) optimization.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluates various pretreatment techniques (thermal, autoclaving, microwaving, ultrasonication) for processing Sorghum stalk to improve its holocellulose and lignin content.
  • The most effective method identified was autoclaving with 1% NaOH at 121 °C and 15 psi for 30 minutes, which significantly removed lignin and enhanced surface texture of the biomass.
  • Post-preparation, enzymatic hydrolysis revealed a 1.5-fold increase in glucose yield, producing 34 mg/g from pretreated biomass compared to 22.4 mg/g from raw biomass.
View Article and Find Full Text PDF