Introduction The ideal abdominal wound closure provides strength and a barrier to infection. The major cause of morbidity following any laparotomy is abdominal wound dehiscence. For prompt patient recovery and outcome factors influencing wound healing following mass closure of post-laparotomy, wound dehiscence patients are evaluated in this present study.
View Article and Find Full Text PDFIntroduction: Osteoporosis poses a significant health burden, particularly among postmenopausal women. While obesity in the form of BMI has been implicated in various health conditions, the relationship between waist-hip ratio (WHR) and osteoporosis remains debated. This study aims to estimate the prevalence of osteoporosis risk and explore the association between WHR and osteoporosis risk among postmenopausal women in rural South India.
View Article and Find Full Text PDFExposure to ionizing radiation, accidental or intentional, may lead to delayed effects of acute radiation exposure (DEARE) that manifest as injury to organ systems, including the kidney, heart, and brain. This study examines the role of activated protein C (APC), a known mitigator of radiation-induced early toxicity, in long-term plasma metabolite and lipid panels that may be associated with DEARE in APCHi mice. The APCHi mouse model used in the study was developed in a C57BL/6N background, expressing the D168F/N173K mouse analog of the hyper-activatable human D167F/D172K protein C variant.
View Article and Find Full Text PDFPurpose: Over the years, animal models of local heart irradiation have provided insight into mechanisms of and treatments for radiation-induced heart disease in human populations. However, it is not completely clear which manifestations of radiation injury are most commonly seen after whole heart irradiation, and whether certain biological factors impact experimental results. Combining 9 homogeneous studies in rat models of whole heart irradiation from one laboratory, we sought to identify experimental and/or biological factors that impact heart outcomes.
View Article and Find Full Text PDFThe heart is one of the organs that is sensitive to developing delayed adverse effects of ionizing radiation (IR) exposure. Radiation-induced heart disease (RIHD) occurs in cancer patients and cancer survivors, as a side effect of radiation therapy of the chest, with manifestation several years post-radiotherapy. Moreover, the continued threat of nuclear bombs or terrorist attacks puts deployed military service members at risk of exposure to total or partial body irradiation.
View Article and Find Full Text PDFSurvivors of acute radiation exposure are likely to experience delayed effects that manifest as injury in late-responding organs such as the heart. Non-invasive indicators of radiation-induced cardiac dysfunction are important in the prediction and diagnosis of this disease. In this study, we aimed to identify urinary metabolites indicative of radiation-induced cardiac damage by analyzing previously collected urine samples from a published study.
View Article and Find Full Text PDFPurpose: Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model.
View Article and Find Full Text PDFMissions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure.
View Article and Find Full Text PDFIn radiation therapy of tumors in the chest, such as in lung or esophageal cancer, part of the heart may be situated in the radiation field. This can lead to the development of radiation-induced heart disease. The mechanisms by which radiation causes long-term injury to the heart are not fully understood, but investigations in pre-clinical research models can contribute to mechanistic insights.
View Article and Find Full Text PDFA subset of cancer patients treated with radiation therapy may experience radiation-induced heart disease (RIHD) that develops within weeks to several years after cancer treatment. Rodent models are most commonly used to examine the biological effects of local X-rays in the heart and test potential strategies to reduce RIHD. While developments in technology over the last decades have changed the procedures for local heart irradiation in animal models, the X-ray settings and radiation doses have remained quite consistent in time and between different research laboratories.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2022
Purpose: Astronauts in space vehicles beyond low-Earth orbit will be exposed to high charge and energy (HZE) ions, and there is concern about potential adverse effects on the cardiovascular system. Thus far, most animal studies that assess cardiac effects of HZE particles have included only males. This study assessed the effects of oxygen ions (O) as a representative ion of the intravehicular radiation environment on the heart of female mice.
View Article and Find Full Text PDFAlthough a broad range of viruses cause myocarditis, the mechanisms that underlie viral myocarditis are poorly understood. Here, we report that the M2 gene is a determinant of reovirus myocarditis. The M2 gene encodes outer capsid protein μ1, which mediates host membrane penetration during reovirus entry.
View Article and Find Full Text PDFPurpose: While there is concern about degenerative tissue effects of exposure to space radiation during deep-space missions, there are no pharmacological countermeasures against these adverse effects. γ-Tocotrienol (GT3) is a natural form of vitamin E that has anti-oxidant properties, modifies cholesterol metabolism, and has anti-inflammatory and endothelial cell protective properties. The purpose of this study was to test whether GT3 could mitigate cardiovascular effects of oxygen ion (O) irradiation in a mouse model.
View Article and Find Full Text PDFDoxorubicin (DOX) is a risk factor for arm lymphedema in breast cancer patients. We reported that DOX opens ryanodine receptors (RYRs) to enact "calcium leak," which disrupts the rhythmic contractions of lymph vessels (LVs) to attenuate lymph flow. Here, we evaluated whether dantrolene, a clinically available RYR1 subtype antagonist, prevents the detrimental effects of DOX on lymphatic function.
View Article and Find Full Text PDFAccidental exposure to ionizing radiation may lead to delayed effects of acute radiation exposure (DEARE) in many organ systems. Activated protein C (APC) is a known mitigator of the acute radiation syndrome. To examine the role of APC in DEARE, we used a transgenic mouse model with 2- to 3-fold increased plasma levels of APC (high in APC, APCHi).
View Article and Find Full Text PDFJ Environ Sci Health C Toxicol Carcinog
September 2021
J Environ Sci Health C Toxicol Carcinog
September 2021
Molecular alterations as a result of exposure to low doses of high linear energy transfer (LET) radiation can have deleterious short- and long-term consequences on crew members embarking on long distance space missions. Oxygen ions (O) are among the high LET charged particles that make up the radiation environment inside a vehicle in deep space. We used mass spectrometry-based metabolomics to characterize urinary metabolic profiles of male C57BL/6J mice exposed to a single dose of 0.
View Article and Find Full Text PDFThe effects of radiation in space on human cognition are a growing concern for NASA scientists and astronauts as the possibility for long-duration missions to Mars becomes more tangible. Oxygen (O) radiation is of utmost interest considering that astronauts will interact with this radiation frequently. O radiation is a class of galactic cosmic ray (GCR) radiation and also present within spacecrafts.
View Article and Find Full Text PDFMany factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity.
View Article and Find Full Text PDFPurpose: Studies are required to determine whether exposures to radiation encountered during manned missions in deep space may have adverse effects on the cardiovascular system. Most of the prior studies on effects of simulated space radiation on the heart and vasculature have been performed in mouse models. To provide data from a second animal species, two studies were performed to assess effects of high-energy charged particle radiation on the heart and abdominal aorta in a rat model.
View Article and Find Full Text PDFThe space extending beyond Earth's magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body H (0.
View Article and Find Full Text PDFLong-term exposures to low dose space radiation may have adverse effects on human health during missions in deep space. Conventional dosimetry, monitoring of prodromal symptoms, and peripheral lymphocyte counts are of limited value as biomarkers of organ- and tissue-specific radiation injury, particularly of injuries that appear weeks or months after radiation exposure. To assess the feasibility of using plasma metabolic and lipidomic profiles as biomarkers of injury from space radiation, we used a mouse model of exposure to low doses of oxygen ions (O) and protons (H).
View Article and Find Full Text PDFPurpose: Although advancements in cancer treatments using radiation therapy (RT) have led to improved outcomes, radiation-induced heart disease (RIHD) remains a significant source of morbidity and mortality in survivors of cancers in the chest. Currently, there are no diagnostic tests in clinical use due to a lack of understanding of the natural history and mechanisms of RIHD development. Few studies have examined the utility of using metabolomics to prospectively identify cancer survivors who are at risk of developing cardiotoxicity.
View Article and Find Full Text PDFCardiovascular disease constitutes an important threat to humans after space missions beyond the Earth's magnetosphere. Epigenetic alterations have an important role in the etiology and pathogenesis of cardiovascular disease. Previous research in animal models has shown that protons and Fe ions cause long-term changes in DNA methylation and expression of repetitive elements in the heart.
View Article and Find Full Text PDFThe health risks associated with spaceflight-induced ocular structural and functional damage has become a recent concern for NASA. The goal of the present study was to characterize the effects of spaceflight and reentry to 1 g on the structure and integrity of the retina and blood-retinal barrier (BRB) in the eye. To investigate possible mechanisms, changes in protein expression profiles were examined in mouse ocular tissue after spaceflight.
View Article and Find Full Text PDF