Mitochondrial adaptations to various environmental cues contribute to cellular and organismal adaptations across multiple model organisms. Due to increased complexity, a direct connection between mitochondrial integrity and oxygen fluctuations, and survival fitness was not demonstrated. Here, using C.
View Article and Find Full Text PDFAmong human diseases, cancer has been in the frontlines of drug discovery and development. Despite having several decades of research efforts, therapeutic targeting of cancer is still challenging, which is due to the ability of cancer cells to adapt to the tumor microenvironment, exhibiting resistance to therapeutic drugs, and facilitated altered cancer metabolism. The small molecule inhibitors aimed at targeting a selective pathway are becoming void since cancer cells can activate alternate mechanisms.
View Article and Find Full Text PDFRational and in vitro evolutionary approaches to improve either protein stability or aggregation resistance were successful, but empirical rules for simultaneous improvement of both stability and aggregation resistance under denaturing conditions are still to be ascertained. We have created a robust variant of a lipase from Bacillus subtilis named "6B" using multiple rounds of in vitro evolution. T(m) and optimum activity temperature of 6B is 78 °C and 65 °C, respectively, which is ~22 °C and 30 °C higher than that of wild-type lipase.
View Article and Find Full Text PDFUltraviolet-B (UV-B) irradiation in the range of 280-320nm has shown to be a promising immunomodulatory tool in xenogenic hepatocyte transplantation. Most of the studies documenting the effect(s) of UV-B irradiation on hepatic transplantation have been carried out in small model systems with very little information available in larger animals. The aim of the present investigation was to study in vitro the effect(s) of UV-B irradiation (302 nm) at 0, 250, 500, 1250 and 2500 J/m2 on the viability and cellular responses in the isolated goat hepatocytes.
View Article and Find Full Text PDFAlthough detailed structure-activity, physicochemical and biophysical investigations in probing the anchor influence in liposomal gene delivery have been reported for glycerol-based transfection lipids, the corresponding investigation for non-glycerol based simple monocationic transfection lipids have not yet been undertaken. Towards this end, herein, we delineate our structure-activity and physicochemical approach in deciphering the anchor dependency in liposomal gene delivery using fifteen new structural analogues (lipids 1-15) of recently reported non-glycerol based monocationic transfection lipids. The C(14) analogues in both series 1 (lipids 1-6) and series 2 (lipids 7-15) showed maximum efficiency in transfecting COS-1 and CHO cells.
View Article and Find Full Text PDF