Publications by authors named "Vijayakumar Sekar"

Infections from multi-drug resistant bacteria (MDRB) have raised a worldwide concern, with projections indicating that fatalities from these infections could surpass those from cancer by 2050. This troubling trend is influenced by several factors, including the scarcity of new antibiotics to tackle challenging infections, the prohibitive costs of last-resort antibiotics, the inappropriate use of antimicrobial agents in agriculture and aquaculture, and the over-prescription of antibiotics in community settings. One promising alternative treatment is the application of antimicrobial peptides (AMPs) against MDRB.

View Article and Find Full Text PDF

Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success.

View Article and Find Full Text PDF

This study addresses the critical challenges faced by global aquatic industries such as overfishing, habitat destruction, pollution, climate change, and unsustainable aquaculture practices. It focuses on developing effective solutions by synthesizing potent inhibitors against Vibrio parahaemolyticus of two strains namely: MTCC-451 (A) and Vp-S14 (B). Biginelli's compounds (B1-4) were identified as promising inhibitors with confirmed antibacterial activity through in silico and in vitro studies.

View Article and Find Full Text PDF

To improve the solubility, antimicrobial efficacy, antioxidant capacity, and biocompatibility of chitosan for broader applications, a series of novel ionic chitosan derivatives were synthesized in this study by amidating chitosan with carboxyl pyridinium sulfonate. These derivatives were characterized through various analytical techniques, including FTIR, H NMR, UV, TGA, and XRD. Proton NMR was particularly utilized to determine the degree of substitution.

View Article and Find Full Text PDF

The global increase in cancer incidence over the past decade highlights the urgent need for more effective therapeutic strategies. Conventional cancer treatments face challenges such as drug resistance and off-target toxicity, which affect healthy tissues. Chondroitin sulfate (CHDS), a naturally occurring bioactive macromolecule, has gained attention because of its biocompatibility, biodegradability, and low toxicity, positioning it as an ideal candidate for cancer-targeted drug delivery systems.

View Article and Find Full Text PDF

Microbial virulence and biofilm formation stand as a big concern against the goal of achieving a green and sustainable future. Microbial pathogenesis is the process by which the microbes (bacterial, fungal, and viral) cause illness in their respective host organism. 'Nanotechnology' is a state-of-art discipline to address this problem.

View Article and Find Full Text PDF

The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms.

View Article and Find Full Text PDF

Hybrid nanomaterials have attracted considerable interest in biomedicine because of their fascinating characteristics and wide range of applications in targeted drug delivery, antibacterial activity, and cancer treatment. This study developed a gelatin-coated Titanium oxide/palladium (TiO/Pd) hybrid nanomaterial to enhance the antibacterial and anticancer capabilities. Morphological and structural analyses were conducted to characterize the synthesized hybrid nanomaterial.

View Article and Find Full Text PDF

A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders.

View Article and Find Full Text PDF

In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm.

View Article and Find Full Text PDF

Biological synthesis of nanoparticles is cost-effective as well as safer than physical and chemical methods. This study focuses on the biological synthesis of silver nanoparticles using Glutamicibacter uratoxydans which remains still unexplored. The synthesized silver nanoparticles are encapsulated with chitosan to prepare nanobiocomposite.

View Article and Find Full Text PDF

The inorganic component of bone matrix, hydroxyapatite (HAp) (with formula Ca(PO)(OH)), can be obtained from inexpensive waste resources that serve as excellent calcium precursors. In the present study, HAp nano-powder was synthesized from eggshells (ES) and crab shells (CS) by wet chemical precipitation method. Also, a hybrid sample was considered which is a mixture of HAp nano-powder synthesized from eggshells (25%) and crab shells (75%) (EC).

View Article and Find Full Text PDF

Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others.

View Article and Find Full Text PDF

A graphene oxide mediated hybrid nano system for pH stimuli-responsive and in vitro drug delivery targeted for cancer was described in this study. Graphene oxide (GO) functionalized Chitosan (CS) mediated nanocarrier capped with xyloglucan (XG) was fabricated with and without Kappa carrageenan (κ-C) from red seaweed, Kappaphycus alverzii, as an active drug. FTIR, EDAX, XPS, XRD, SEM and HR-TEM studies were carried out for GO-CS-XG nanocarrier loaded with and without active drugs to understand the physicochemical properties.

View Article and Find Full Text PDF

An excess of thyroid hormones in the blood characterizes hyperthyroidism. Long-term use of prescription medications to treat hyperthyroidism has substantial adverse effects and when discontinued, the symptoms frequently recur. Several plant species have been utilized to cure hyperthyroidism.

View Article and Find Full Text PDF

In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a).

View Article and Find Full Text PDF

Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods.

View Article and Find Full Text PDF

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells.

View Article and Find Full Text PDF

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications.

View Article and Find Full Text PDF

In the current scenario where more and more products containing nanomaterials are on the technological or pharmaceutical market, it is crucial to have a thorough knowledge of their toxicity before proposing possible applications. A proper analysis of the toxicity of the nanoproducts should include both in vitro and in vivo biological approaches and should consider that the synthesis and purification methods of nanomaterials may affect such toxicity. In the current work, the green synthesis of laminarin embedded ZnO nanoparticles (Lm-ZnO NPs) and their based chitosan capped ZnO nanocomposites (Ch-Lm-ZnO NCmps) is described for the first time.

View Article and Find Full Text PDF

The goal of this study was to assess the efficacy of probiotics in mitigating ammonia-induced toxicity in fish. Fish were divided into four groups: control, only probiotic, only ammonia, and combined ammonia + probiotic. For 8 weeks, the Oreochromis mossambicus were exposed to waterborne ammonia at 1.

View Article and Find Full Text PDF

A rational design accurate based on the use of Statistical Design of the Experiments (DoE) and Molecular Dynamics Simulations Studies allows the prediction and the understanding of thermo-responsive hydrogels prepared regarding their gelation temperature and anti-cancer drug release rate. N-isopropylacrilamide (NIPAM) modified with specific co-monomers and crosslinkers, can be used to prepare "on-demand" thermo-responsive hydrogels with the ideal properties for clinical applications in which local sustained release of drugs is crucial. Two preferential formulations resulting from the predictive studies of DoE and In Silico methods were synthesized by radical polymerization, fully characterized, and loaded with the anticancer drug Doxorubicin (Dox).

View Article and Find Full Text PDF

The preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PW-HAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature.

View Article and Find Full Text PDF

Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na/K-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue.

View Article and Find Full Text PDF

Cyprinus carpio is an important freshwater fish in aquaculture. It was used for the isolation of potential probiotic strain for aquaculture applications. The most dominant strain was isolated on MRS agar from the gastrointestinal (GI) of C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqcm15alamnh0flc7fo4pvjmker5df0nh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once