Publications by authors named "Vijayakumar M R"

Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer changing mRNA levels of apoptosis-related proteins.

View Article and Find Full Text PDF

Background: Vinorelbine bitartrate (VRL) is an antimitotic agent approved by FDA for breast cancer and non-small cell lung cancer (NSCLC) in many countries. However, high aqueous solubility and thermo degradable nature of VRL limited the availability of marketed dosage forms.

Objectives: The current work is focused on the development of lipid based aqueous core nanocapsules which can encapsulate the hydrophilic VRL in the aqueous core of nanocapsules protected with a lipidic shell which will further provide a sustained release.

View Article and Find Full Text PDF

Surface and mechanical properties of the biomaterials are determinants of cellular responses. In our previous study, star-shaped poly(d,l-Lactide)-b-gelatin (ss-pLG) was reported for possessing improved cellular adhesion and proliferation. Here, we extended our investigation to establish the cellular compatibility of gelatin-grafted PDLLA with respect to mechanical properties of biological tissues.

View Article and Find Full Text PDF

Catechin (CT) is natural molecule proved for antidiabetic activity. Clinical application of CT is highly restricted because of its low bioavailability and ineffectiveness in in vivo conditions. Therefore, the main objective of the present investigation was to formulate CT-loaded Eudragit RS 100 microparticles and evaluated for its potential against diabetes.

View Article and Find Full Text PDF

The clinical application of trans resveratrol (RSV) in glioma treatment is largely limited because of its rapid metabolism, fast elimination from systemic circulation and low biological half life. Therefore, the objectives of this study were to enhance the circulation time, biological half life and passive brain targeting of RSV using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) coated liposomes (RSV-TPGS-Lipo). In addition to basic liposomal characterizations, in vitro anticancer potential against C6 glioma cell lines and cellular internalization of liposomes were carried out by MTT assay and confocal laser scanning microscopy (CLSM), respectively.

View Article and Find Full Text PDF

Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer.

View Article and Find Full Text PDF

The effective treatment of brain cancer is hindered by the poor transport across the blood-brain barrier (BBB) and the low penetration across the blood-tumor barrier (BTB). The objective of this work was to formulate transferrin-conjugated docetaxel (DTX)-loaded d-alpha-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for targeted brain cancer therapy. The micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, drug encapsulation efficiency, drug loading, in vitro release study and brain distribution study.

View Article and Find Full Text PDF

The present research work is focused on the development of solid lipid nanoparticles of cefuroxime axetil (CA-SLN) for its enhanced inhibitory activity against Staphylococcus aureus produced biofilm. CA-SLN was prepared by solvent emulsification/evaporation method using single lipid (stearic acid (SA)) and binary lipids (SA and tristearin (TS)). Process variables such as volume of dispersion medium, concentration of surfactant, homogenization speed and time were optimized.

View Article and Find Full Text PDF

Introduction: The major drawbacks associated with most of the anti-cancer drugs are their potential adverse effects. Distribution of these drugs throughout the body causes untoward adverse effects and less accumulation of drug at the site of tumors also causes decrease in therapeutic efficacy. Targeted nanomedicines are the emerging systems to improve the targetability of drug to the tumor site and to reduce the toxicity with maximum efficacy.

View Article and Find Full Text PDF