Computational chemistry and machine learning are used in drug discovery to predict the target-specific and pharmacokinetic properties of molecules. Multiparameter optimization (MPO) functions are used to summarize multiple properties into a single score, aiding compound prioritization. However, over-reliance on subjective MPO functions risks reinforcing human bias.
View Article and Find Full Text PDFThere is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models.
View Article and Find Full Text PDFMas-related G protein-coupled receptor X1 (MRGPRX1) is a human sensory neuron-specific receptor and potential target for the treatment of pain. Positive allosteric modulators (PAMs) of MRGPRX1 have the potential to preferentially activate the receptors at the central terminals of primary sensory neurons and minimize itch side effects caused by peripheral activation. Using a high-throughput screening (HTS) hit, a series of thieno[2,3-]pyrimidine-based molecules were synthesized and evaluated as human MRGPRX1 PAMs in HEK293 cells stably transfected with human MrgprX1 gene.
View Article and Find Full Text PDFBackground: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors.
View Article and Find Full Text PDFFormulation/pharmaceutical excipients play a major role in formulating drug candidates, with the objectives of ease of administration, targeted delivery and complete availability. Many excipients used in pharmaceutical formulations are orphanized in preclinical drug discovery. These orphan excipients could enhance formulatability of highly lipophilic compounds.
View Article and Find Full Text PDFCocaine exerts its stimulant effect by inhibiting dopamine reuptake leading to increased dopamine signaling. This action is thought to reflect binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share the behavioral actions of cocaine.
View Article and Find Full Text PDFIn the present era of drug development, quantification of drug concentrations following pharmacokinetic studies has preferentially been performed using plasma as a matrix rather than whole blood. However, it is critical to realize the difference between measuring drug concentrations in blood versus plasma and the consequences thereof. Pharmacokinetics using plasma data may be misleading if concentrations differ between plasma and red blood cells (RBCs) because of differential binding in blood.
View Article and Find Full Text PDFA series of allosteric kidney-type glutaminase (GLS) inhibitors possessing a mercaptoethyl (SCHCH) linker were synthesized in an effort to further expand the structural diversity of chemotypes derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a prototype allosteric inhibitor of GLS. BPTES analog 3a with a mercaptoethyl linker between the two thiadiazole rings was found to potently inhibit GLS with an IC value of 50 nM. Interestingly, the corresponding derivative with an n-propyl (CHCHCH) linker showed substantially lower inhibitory potency (IC = 2.
View Article and Find Full Text PDFDrug Saf
August 2020
The introduction of novel, small-molecule Janus kinase inhibitors namely tofacitinib, baricitinib and upadacitinib has provided an alternative treatment option for patients with rheumatoid arthritis outside of traditional drugs and expensive biologics. This review aimed to critically assess the drug-drug interaction potential of tofacitinib, baricitinib and upadacitinib and provide a balanced perspective for choosing the most appropriate Janus kinase inhibitor based on the needs of patients with rheumatoid arthritis including co-medications and renal/hepatic impairment status. Based on the critical assessment, all three approved Janus kinase inhibitors generally provide a favourable opportunity for co-prescription with a plethora of drugs.
View Article and Find Full Text PDFNeutral sphingomyelinase 2 (nSMase2) catalyzes the cleavage of sphingomyelin to phosphorylcholine and ceramide, an essential step in the formation and release of exosomes from cells that is critical for intracellular communication. Chronic increase of brain nSMase2 activity and related exosome release have been implicated in various pathological processes, including the progression of Alzheimer's disease (AD), making nSMase2 a viable therapeutic target. Recently, we identified phenyl ()-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-]pyridazin-8-yl)pyrrolidin-3-yl)carbamate , the first nSMase2 inhibitor that possesses both favorable pharmacodynamics and pharmacokinetic (PK) parameters, including substantial oral bioavailability, brain penetration, and significant inhibition of exosome release from the brain in vivo.
View Article and Find Full Text PDFThe carbon and nitrogen components of glutamine are used for multiple biosynthetic processes by tumors. Glutamine metabolism and the therapeutic potential of glutamine antagonists (GA), however, are incompletely understood in malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma observed in patients with neurofibromatosis type I. We investigated glutamine dependence of MPNST using JHU395, a novel orally bioavailable GA prodrug designed to circulate inert in plasma, but permeate and release active GA within target tissues.
View Article and Find Full Text PDF2-(Phosphonomethyl)-pentanedioic acid (2-PMPA) is a potent (IC = 300 pM) and selective inhibitor of glutamate carboxypeptidase II (GCPII) with efficacy in multiple neurological and psychiatric disease preclinical models and more recently in models of inflammatory bowel disease (IBD) and cancer. 2-PMPA (), however, has not been clinically developed due to its poor oral bioavailability (<1%) imparted by its four acidic functionalities ( Log = -1.14).
View Article and Find Full Text PDFMas-related G-protein-coupled receptor X1 (MRGPRX1) is a human sensory neuron-specific receptor and has been actively investigated as a therapeutic target for the treatment of pain. By use of two HTS screening hit compounds, 4-(4-(benzyloxy)-3-methoxybenzylamino)benzimidamide () and 4-(2-(butylsulfonamido)-4-methylphenoxy)benzimidamide (), as molecular templates, a series of human MRGPRX1 agonists were synthesized and evaluated for their agonist activity using HEK293 cells stably transfected with human MrgprX1. Conversion of the benzamidine moiety into a 1-aminoisoquinoline moiety carried out in the later stage of structural optimization led to the discovery of a highly potent MRGPRX1 agonist, -(2-(1-aminoisoquinolin-6-yloxy)-4-methylphenyl)-2-methoxybenzenesulfonamide (), not only devoid of positively charged amidinium group but also with superior selectivity over opioid receptors.
View Article and Find Full Text PDF6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist with robust anticancer efficacy; however, its therapeutic potential was hampered by its biodistribution and toxicity to normal tissues, specifically gastrointestinal (GI) tissues. To circumvent DON's toxicity, we synthesized a series of tumor-targeted DON prodrugs designed to circulate inert in plasma and preferentially activate over DON in tumor. Our best prodrug 6 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate) showed stability in plasma, liver, and intestinal homogenates yet was readily cleaved to DON in P493B lymphoma cells, exhibiting a 55-fold enhanced tumor cell-to-plasma ratio versus that of DON and resulting in a dose-dependent inhibition of cell proliferation.
View Article and Find Full Text PDF