Publications by authors named "Vijaya Pooja Vaikari"

The CD99 gene encodes a transmembrane protein that is involved in cell differentiation, adhesion, migration, and protein trafficking. CD99 is differentially expressed on the surface of hematopoietic cells both in the myeloid and lymphoid lineages. CD99 has two isoforms, the long and short isoforms that play different roles depending on the cellular context.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion and differentiation arrest of the myeloid progenitor cells, which leads to the accumulation of immature cells called blasts in the bone marrow and peripheral blood. Mutations in the receptor tyrosine kinase FLT3 occur in 30% of normal karyotype patients with AML and are associated with a higher incidence of relapse and worse survival. Targeted therapies against FLT3 mutations using small-molecule FLT3 tyrosine kinase inhibitors (TKIs) have long been investigated, with some showing favorable clinical outcomes.

View Article and Find Full Text PDF

CD99 is a transmembrane glycoprotein shown to be upregulated in various malignancies. We have previously reported CD99 to be highly upregulated and present a viable therapeutic target in acute myeloid leukemia (AML). Currently, no therapy against CD99 is under clinical investigation.

View Article and Find Full Text PDF

FLT3 receptor is an important therapeutic target in acute myeloid leukemia due to high incidence of mutations associated with poor clinical outcome. Targeted therapies against the FLT3 receptor, including small-molecule FLT3 tyrosine kinase inhibitors (TKIs) and anti-FLT3 antibodies, have demonstrated promising preclinical and even clinical efficacy. Yet, even with the current FDA approval for two FLT3 inhibitors, these modalities were unable to cure AML or significantly extend the lives of patients with a common mutation called FLT3-ITD.

View Article and Find Full Text PDF

In an effort to identify target genes in acute myeloid leukemia (AML), we compared gene expression profiles between normal and AML cells from various publicly available datasets. We identified , a gene that is up-regulated in AML patients. In 186 patients from The Cancer Genome Atlas AML dataset, was over-expressed in patients with -ITD and was down-regulated in patients with mutations.

View Article and Find Full Text PDF

CD97, a member of the adhesion G-protein coupled receptor family, is normally expressed on leukocytes and smooth muscles. CD97 is also expressed in a variety of solid cancers, particularly those with aggressive metastatic phenotypes. Here we characterize the clinical significance of CD97 in acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Monoamine oxidase A (MAOA) is a mitochondrial enzyme, which degrades monoamine neurotransmitters and dietary amines and produces HO. Recent studies have shown increased MAOA expression in prostate cancer (PCa), glioma, and classical Hodgkin lymphoma. However, the biological function of MAOA in cancer development remains unknown.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a highly malignant brain tumor, accounts for half of all gliomas. Despite surgery, radiation and chemotherapy, the median survival is between 12 and 15 months. The poor prognosis is due to tumor recurrence attributed to chemoresistant glioma cancer stem cells (GSCs).

View Article and Find Full Text PDF

OBJECT Bevacizumab (Avastin), an antibody to vascular endothelial growth factor (VEGF), alone or in combination with irinotecan (Camptosar [CPT-11]), is a promising treatment for recurrent glioblastoma. However, the intravenous (IV) administration of bevacizumab produces a number of systemic side effects, and the increase in survival it provides for patients with recurrent glioblastoma is still only a few months. Because bevacizumab is an antibody against VEGF, which is secreted into the extracellular milieu by glioma cells, the authors hypothesized that direct chronic intratumoral delivery techniques (i.

View Article and Find Full Text PDF