In this paper, we present the studies on electromagnetic interference (EMI) shielding effectiveness (SE) of KCrO-PMMA composites developed by two different methods: one in bulk form of thickness 1.2 mm and another by stacking twelve layers of thin films each of thickness 100 μm. The EMI SE of stacked twelve layers of 1.
View Article and Find Full Text PDFCellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects.
View Article and Find Full Text PDFWe introduce a strategy for the fabrication of silver/polycarbonate (Ag/PC) nanocomposite flexible films of (20 ± 0.01) μm thickness with different filling factor of surface plasmon metal using customized solution cast-thermal evaporation method. Structural characterizations confirmed the good crystallinity with cubic phase of Ag nanoparticles in PC films.
View Article and Find Full Text PDFWe report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.
View Article and Find Full Text PDFA novel small molecule (SM) with a low-band-gap based on acenaphthoquinoxaline was synthesized and characterized. It was soluble in polar solvents such as N,N-dimethylformamide and dimethylacetamide. SM showed broad absorption curves in both solution and thin films with a long-wavelength maximum at 642 nm.
View Article and Find Full Text PDFThe multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2010
The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement.
View Article and Find Full Text PDFPES membrane of thickness 25 microm was irradiated by Cl(9+) ions of energy 100 MeV at IUAC, New Delhi. Microstructure changes due to exposure to high-energy ions were investigated by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/vis) absorption spectroscopies, X-ray diffraction technique and by dynamic mechanical analysis (DMA). A significant loss of crystallinity is observed by the XRD data.
View Article and Find Full Text PDFPolycarbonate films (thickness 18, 25 and 38 microm) were irradiated by a beam of 100MeV Ni7+ ion. The permeability for hydrogen and carbon dioxide was measured from both sides of membrane at increasing etching time. These membranes show larger permeability from the irradiation side, than the reverse side indicating the formation of conical tracks and asymmetrical membrane.
View Article and Find Full Text PDF