Publications by authors named "Vijay Sankaran"

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown.

View Article and Find Full Text PDF

Background: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.

Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.

View Article and Find Full Text PDF

Over the course of the last decade, genomic studies in the context of normal human hematopoiesis have provided new insights into the early pathogenesis of myeloproliferative neoplasms (MPN). A preclinical phase of MPN, termed clonal hematopoiesis (CH) was identified and subsequent lineage tracing studies revealed a multi-decade long time interval from acquisition of an MPN phenotypic driver mutation in a hematopoietic stem cell (HSC) to the development of overt MPN. Multiple germline variants associated with MPN risk have been identified through genome-wide association studies (GWAS) and in some cases functional interrogation of the impact of the variant has uncovered new insights into HSC biology and MPN development.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied plasma proteomic profiles linked to subclinical mutations in blood cells, particularly focusing on clonal hematopoiesis of indeterminate potential (CHIP) and its connection to various health outcomes, including coronary artery disease (CAD).
  • The study involved a large, diverse group of participants and identified a significant number of unique proteins associated with key driver genes, showing differences based on genetics, sex, and race.
  • Methods like Mendelian randomization and mouse model tests helped clarify the causal effects of these proteins, revealing shared plasma proteins between CHIP and CAD that could inform future clinical insights.
View Article and Find Full Text PDF

Gene therapy using hematopoietic stem and progenitor cells is altering the therapeutic landscape for patients with hematologic, immunologic, and metabolic disorders but has not yet been successfully developed for individuals with the bone marrow failure syndrome Diamond-Blackfan anemia (DBA). More than 30 mutations cause DBA through impaired ribosome function and lead to inefficient translation of the erythroid master regulator GATA1, providing a potential avenue for therapeutic intervention applicable to all patients with DBA, irrespective of the underlying genotype. Here, we report the development of a clinical-grade lentiviral gene therapy that achieves erythroid lineage-restricted expression of GATA1.

View Article and Find Full Text PDF
Article Synopsis
  • Latin Americans are often overlooked in genetic studies, which can widen gaps in personalized medicine due to the challenges of accessing genetic data and consent processes.
  • The Genetics of Latin American Diversity (GLAD) Project compiles genetic information from over 53,000 individuals across various regions to explore diverse ancestry and gene flow in the Americas.
  • GLAD includes a tool called GLAD-match to align external genetic samples with its database while protecting individual privacy, thus supporting more inclusive genomic research and enhancing personalized medicine for Latin Americans.
View Article and Find Full Text PDF
Article Synopsis
  • Most genetic variants linked to physical traits are found in non-coding regulatory areas rather than coding regions of the human genome, especially in those associated with blood cell traits.
  • We created a method called Perturb-multiome to analyze chromatin accessibility and gene expression simultaneously in single cells, using CRISPR to perturb master transcription factors during hematopoiesis.
  • Our findings indicate that a small fraction of TF-sensitive chromatin regions is significantly enriched in heritability for blood cell phenotypes, highlighting their importance in understanding genetic variants linked to these traits.
View Article and Find Full Text PDF

The detection of mitochondrial DNA (mtDNA) mutations in single cells holds considerable potential to define clonal relationships coupled with information on cell state in humans. Previous methods focused on higher heteroplasmy mutations that are limited in number and can be influenced by functional selection, introducing biases for lineage tracing. Although more challenging to detect, intermediate to low heteroplasmy mtDNA mutations are valuable due to their high diversity, abundance, and lower propensity to selection.

View Article and Find Full Text PDF
Article Synopsis
  • Clonal hematopoiesis (CH) occurs when genetically identical blood cells expand, often influenced by genetic mutations linked to blood cancers; however, many cases happen without known driver mutations.
  • Researchers analyzed 51,399 genomes to study a specific type of CH (CH-LPMneg) without detectable leukemia-related mutations, developing a new method (GEM rate) to estimate mutation burden without paired samples.
  • Through their study, they identified seven genes linked to CH-LPMneg and found that alterations in hematopoietic stem cell (HSC) behavior may drive this mutation burden, while a broader analysis revealed relationships between GEM and the expression of 404 genes.
View Article and Find Full Text PDF
Article Synopsis
  • Mosaic loss of the X chromosome (mLOX) is a common genetic alteration in female leukocytes, found in 12% of a study involving 883,574 female participants, with around 2% of their leukocytes showing this alteration.
  • Female individuals with mLOX have a higher risk of developing myeloid and lymphoid leukemias, and genetic studies revealed 56 common variants linked to mLOX, pointing towards genes involved in chromosomal errors and diseases.
  • The research also found specific rare genetic variants that significantly increase the risk of mLOX and demonstrated how certain X chromosome alleles are preferentially retained, suggesting that both genetic predispositions and selective pressures play a role in the development and growth
View Article and Find Full Text PDF
Article Synopsis
  • Researchers sequenced the genomes of 822 families with suspected rare monogenic diseases that were previously undiagnosed through standard genetic tests, including exome sequencing.
  • They found that genome sequencing provided a molecular diagnosis for 29.3% of the initial families, with 8.2% requiring genome sequencing to identify variants that exome sequencing missed.
  • The study showed that both research and clinical approaches could benefit from genome sequencing, demonstrating its importance in uncovering previously undetected genetic variations.
View Article and Find Full Text PDF

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice.

View Article and Find Full Text PDF

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform.

View Article and Find Full Text PDF

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.

View Article and Find Full Text PDF

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

View Article and Find Full Text PDF

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort.

View Article and Find Full Text PDF

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs). Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging.

View Article and Find Full Text PDF

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified.

View Article and Find Full Text PDF

Researchers are leveraging what we have learned from model organisms to understand if the same principles arise in human physiology, development, and disease. In this collection of Voices, we asked researchers from different fields to discuss what tools and insights they are using to answer fundamental questions in human biology.

View Article and Find Full Text PDF

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium.

View Article and Find Full Text PDF

Mitochondria (MT) participate in most metabolic activities of mammalian cells. A near-unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to "metabolically empower" cancer cells while "depleting immune cells," providing new insights into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying mitochondrial trafficking between cancer and T cells.

View Article and Find Full Text PDF