The present study demonstrates that precursor passivation is an effective approach for improving the crystallization process and controlling the detrimental defect density in high-efficiency CuZnSn(S,Se) (CZTSSe) thin films. It is achieved by applying the atomic layer deposition (ALD) of the tin oxide (ALD-SnO) capping layer onto the precursor (Cu-Zn-Sn) thin films. The ALD-SnO capping layer was observed to facilitate the homogeneous growth of crystalline grains and mitigate defects prior to sulfo-selenization in CZTSSe thin films.
View Article and Find Full Text PDFWe report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and FeO nanoparticles (MRGO-NH) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and FeO nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-FeO-MWCNTs-NH) was utilized as a pseudoenzymatic signal-amplifying label.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Cation incorporation emerges as a promising approach for improving the performance of the kesterite CuZnSn(S,Se) (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of InS is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process.
View Article and Find Full Text PDFNi-Fe-based electrode materials are promising candidates for the oxygen evolution reaction (OER). The synergy between Fe and Ni atoms is crucial in modulating the electronic structure of the active site to enhance electrochemical performance. Herein, a simple chemical immersion technique was used to grow Ni-Fe oxalate nanowires directly on a porous nickel foam substrate.
View Article and Find Full Text PDFA cation substitution in CuZnSn(S,Se) (CZTSSe) offers a viable strategy to reduce the open-circuit voltage ()-deficit by altering the characteristics of band-tail states, antisite defects, and related defect clusters. Herein, we report a facile single process, i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Kesterite-based thin-film solar cells (TFSCs) have recently gained significant attention in the photovoltaic (PV) sector for their elemental earth abundance and low toxicity. An inclusive study from the past reveals basic knowledge about the grain boundary (GB) and grain interior (GI) interface. However, the compositional dependency of the surface potential within GBs and GIs remains unclear.
View Article and Find Full Text PDFThe synthesis of earth-abundant, low-cost, and stable electrocatalysts with high efficiency in the oxygen evolution reaction (OER) is a necessary requirement for improving the effectiveness of electrochemical water splitting approach. To date, expensive electrode materials and time-consuming synthesis procedures have generally been used for the electrocatalysts applied in water splitting, which limits their efficiency. Herein, nickel-iron oxyhydroxide nanosheets are fabricated by a scalable and ultrafast (requiring only 5 s) wet chemical strategy on a nickel foam substrate.
View Article and Find Full Text PDFIn recent years, low-cost, non-noble metal-based and stable catalysts have gained attention for the development of clean energy devices. Additionally, the synthesis of materials that can exhibit more than one electrocatalytic reaction is notable. In this work, stepwise electrodeposited nickel-iron hydroxide nanoarrays are investigated as anode electrocatalysts with enhanced performance towards the oxidation of water, urea, and hydrazine.
View Article and Find Full Text PDFCurrently, electronic waste (e-waste) is the world's most challenging and rapidly growing problem in the waste stream. To develop an alternative way to use e-waste (waste copper (Cu) wires) to accelerate the oxygen evolution reaction (OER) of water electrolysis, the waste Cu wires are used as a low-cost current collector. We demonstrate a simple electrodeposition process to deposit nickel-iron hydroxide (NiFe LDH) nanosheets on self-supported copper hydroxide (Cu(OH)/Cu) nanowires grown via chemical-oxidation on waste Cu wire.
View Article and Find Full Text PDF