Publications by authors named "Vijay Dhawan"

Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.

View Article and Find Full Text PDF
Article Synopsis
  • Isolated rapid eye movement sleep behavior disorder (iRBD) is an early warning sign for Parkinson's disease and related disorders.
  • A longitudinal study showed that specific brain networks related to motor and cognitive functions (PDRP and PDCP) exhibited increased activity over time in individuals with iRBD, with more significant changes noted in the motor network.
  • The findings indicate that changes in brain connectivity and dopamine levels can help predict the onset of Parkinson's disease in these individuals up to 1.2 years before it occurs.
View Article and Find Full Text PDF

Subthalamic nucleus deep brain stimulation (STN-DBS) alleviates motor symptoms of Parkinson's disease (PD), thereby improving quality of life. However, quantitative brain markers to evaluate DBS responses and select suitable patients for surgery are lacking. Here, we used metabolic brain imaging to identify a reproducible STN-DBS network for which individual expression levels increased with stimulation in proportion to motor benefit.

View Article and Find Full Text PDF

Background: Alzheimer's disease-related pattern (ADRP) is a metabolic brain biomarker of Alzheimer's disease (AD). While ADRP is being introduced into research, the effect of the size of the identification cohort and the effect of the resolution of identification and validation images on ADRP's performance need to be clarified.

Methods: 240 2-[F]fluoro-2-deoxy-D-glucose positron emission tomography images [120 AD/120 cognitive normals (CN)] were selected from the Alzheimer's disease neuroimaging initiative database.

View Article and Find Full Text PDF

Background: Idiopathic Parkinson's disease (iPD) is associated with two distinct brain networks, PD-related pattern (PDRP) and PD-related cognitive pattern (PDCP), which correlate respectively with motor and cognitive symptoms. The relationship between the two networks in individual patients is unclear.

Objective: To determine whether a consistent relationship exists between these networks, we measured the difference between PDRP and PDCP expression, termed delta, on an individual basis in independent populations of patients with iPD (n = 356), patients with idiopathic REM sleep behavioral disorder (iRBD) (n = 21), patients with genotypic PD (gPD) carrying GBA1 variants (n = 12) or the LRRK2-G2019S mutation (n = 14), patients with atypical parkinsonian syndromes (n = 238), and healthy control subjects (n = 95) from the United States, Slovenia, India, and South Korea.

View Article and Find Full Text PDF

Purpose: We present the findings of our final prospective study submitted to the U.S. Food and Drug Administration (FDA) for New Drug Application (NDA) approval for the use of 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (F-18 FDOPA) positron emission tomography (PET) imaging for Parkinson's disease (PD).

View Article and Find Full Text PDF

Functional imaging has been used extensively to identify and validate disease-specific networks as biomarkers in neurodegenerative disorders. It is not known, however, whether the connectivity patterns in these networks differ with disease progression compared to the beneficial adaptations that may also occur over time. To distinguish the 2 responses, we focused on assortativity, the tendency for network connections to link nodes with similar properties.

View Article and Find Full Text PDF

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for Parkinson's disease (PD) but can have an adverse effect on speech. In normal speakers and in those with spinocerebellar ataxia, an inverse relationship between regional cerebral blood flow (rCBF) in the left inferior frontal (IFG) region and the right caudate (CAU) is associated with speech rate. This pattern was examined to determine if it was present in PD, and if so, whether it was altered by STN-DBS.

View Article and Find Full Text PDF

Purpose: Up to 25% of patients diagnosed as idiopathic Parkinson's disease (IPD) have an atypical parkinsonian syndrome (APS). We had previously validated an automated image-based algorithm to discriminate between IPD, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). While the algorithm was accurate with respect to the final clinical diagnosis after long-term expert follow-up, its relationship to the initial referral diagnosis and to the neuropathological gold standard is not known.

View Article and Find Full Text PDF

Brain stimulation technology has become a viable modality of reversible interventions in the effective treatment of many neurological and psychiatric disorders. It is aimed to restore brain dysfunction by the targeted delivery of specific electronic signal within or outside the brain to modulate neural activity on local and circuit levels. Development of therapeutic approaches with brain stimulation goes in tandem with the use of neuroimaging methodology in every step of the way.

View Article and Find Full Text PDF

Previous multi-center imaging studies with F-FDG PET have established the presence of Parkinson's disease motor- and cognition-related metabolic patterns termed PDRP and PDCP in patients with this disorder. Given that in PD cerebral perfusion and glucose metabolism are typically coupled in the absence of medication, we determined whether subject expression of these disease networks can be quantified in early-phase images from dynamic F-FPCIT PET scans acquired to assess striatal dopamine transporter (DAT) binding. We studied a cohort of early-stage PD patients and age-matched healthy control subjects who underwent F-FPCIT at baseline; scans were repeated 4 years later in a smaller subset of patients.

View Article and Find Full Text PDF

Objective: Recent studies on a rodent model of Parkinson's disease (PD) have raised the possibility of increased blood-brain barrier (BBB) permeability, demonstrated by histology, autoradiography, and positron emission tomography (PET). However, in human PD patients, in vivo evidence of increased BBB permeability is lacking. We examined the hypothesis that levodopa treatment increases BBB permeability in human subjects with PD, particularly in those with levodopa-induced dyskinesia (LID).

View Article and Find Full Text PDF

The natural history of idiopathic Parkinson's disease (PD) varies considerably across patients. While PD is generally sporadic, there are known genetic influences: the two most common, mutations in the LRRK2 or GBA1 gene, are associated with slower and more aggressive progression, respectively. Here, we applied graph theory to metabolic brain imaging to understand the effects of genotype on the organization of previously established PD-specific networks.

View Article and Find Full Text PDF

Gene therapy is emerging as a promising approach for treating neurological disorders, including Parkinson's disease (PD). A phase 2 clinical trial showed that delivering glutamic acid decarboxylase () into the subthalamic nucleus (STN) of patients with PD had therapeutic effects. To determine the mechanism underlying this response, we analyzed metabolic imaging data from patients who received gene therapy and those randomized to sham surgery, all of whom had been scanned preoperatively and at 6 and 12 months after surgery.

View Article and Find Full Text PDF

Introduction: The heterogeneity of behavioral variant frontotemporal dementia (bvFTD) calls for multivariate imaging biomarkers.

Methods: We studied a total of 148 dementia patients from the Feinstein Institute (Center-A: 25 bvFTD and 10 Alzheimer's disease), Technical University of Munich (Center-B: 44 bvFTD and 29 FTD language variants), and Alzheimer's Disease Neuroimaging Initiative (40 Alzheimer's disease subjects). To identify the covariance pattern of bvFTD (behavioral variant frontotemporal dementia-related pattern [bFDRP]), we applied principal component analysis to combined 18F-fluorodeoxyglucose-positron emission tomography scans from bvFTD and healthy subjects.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the effects of different image reconstruction algorithms on topographic characteristics and diagnostic performance of the Parkinson's disease related pattern (PDRP).

Methods: FDG-PET brain scans of 20 Parkinson's disease (PD) patients and 20 normal controls (NC) were reconstructed with six different algorithms in order to derive six versions of PDRP. Additional scans of 20 PD, 25 atypical parkinsonism (AP) patients and 20 NC subjects were used for validation.

View Article and Find Full Text PDF

Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g.

View Article and Find Full Text PDF

In a rodent model of Parkinson's disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis - a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts.

View Article and Find Full Text PDF

Electrical stimulation of subthalamic nuclei (STN) is a widely used therapy in Parkinson's disease (PD). While deep brain stimulation (DBS) of the STN alters the neurophysiological activity in basal ganglia, the therapeutic mechanism has not been established. A positron emission tomography (PET) study of cerebral blood flow (CBF) during speech production in PD subjects treated with STN-DBS found significant increases in global (whole-brain) CBF.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to identify the specific metabolic brain pattern characteristic for Parkinson's disease (PD): Parkinson's disease-related pattern (PDRP), using network analysis of [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) brain images in a cohort of Slovenian PD patients.

Methods: Twenty PD patients (age 70.1 ± 7.

View Article and Find Full Text PDF

Purpose: To evaluate the reproducibility of the expression of Parkinson's Disease Related Pattern (PDRP) across multiple sets of 18F-FDG-PET brain images reconstructed with different reconstruction algorithms.

Methods: 18F-FDG-PET brain imaging was performed in two independent cohorts of Parkinson's disease (PD) patients and normal controls (NC). Slovenian cohort (20 PD patients, 20 NC) was scanned with Siemens Biograph mCT camera and reconstructed using FBP, FBP+TOF, OSEM, OSEM+TOF, OSEM+PSF and OSEM+PSF+TOF.

View Article and Find Full Text PDF

Objective: To determine whether cognitive impairment in Parkinson disease (PD) and Alzheimer disease (AD) derives from the same network pathology.

Methods: We analyzed F-fluorodeoxyglucose PET scans from 40 patients with AD and 40 age-matched healthy controls from the Alzheimer's Disease Neuroimaging Initiative and scanned an additional 10 patients with AD and 10 healthy controls at The Feinstein Institute for Medical Research to derive an AD-related metabolic pattern (ADRP) analogous to our previously established PD cognition-related pattern (PDCP) and PD motor-related pattern (PDRP). We computed individual subject expression values for ADRP and PDCP in 89 patients with PD and correlated summary scores for cognitive functioning with network expression.

View Article and Find Full Text PDF

Levodopa-induced dyskinesia (LID) is the most common, disruptive complication of Parkinson's disease (PD) pharmacotherapy, yet despite decades of research, the changes in regional brain function underlying LID remain largely unknown. We previously found that the cerebral vasomotor and metabolic responses to levodopa are dissociated in PD subjects. Nonetheless, it is unclear whether levodopa-mediated dissociation is exaggerated in LID or distinguishes LID from non-LID subjects.

View Article and Find Full Text PDF

Neurocognitive decline, including deficits in motor learning, occurs in the presymptomatic phase of Huntington's disease (HD) and precedes the onset of motor symptoms. Findings from recent neuroimaging studies have linked these deficits to alterations in fronto-striatal and fronto-parietal brain networks. However, little is known about the temporal dynamics of these networks when subjects approach phenoconversion.

View Article and Find Full Text PDF

Unlabelled: The differentiation of idiopathic Parkinson disease (IPD) from multiple system atrophy (MSA) and progressive supranuclear palsy (PSP), the most common atypical parkinsonian look-alike syndromes (APS), can be clinically challenging. In these disorders, diagnostic inaccuracy is more frequent early in the clinical course when signs and symptoms are mild. Diagnostic inaccuracy may be particularly relevant in trials of potential disease-modifying agents, which typically involve participants with early clinical manifestations.

View Article and Find Full Text PDF