This case report presents a real example of a study which introduces the use of reconfigurable platforms in the teaching of electronics engineering to establish a bridge between theory and practice. This gap is one of the major concerns of the electronics engineering students. Different strategies, such as simulation tools or breadboard implementations, have been followed so far to make it easier for students to practice what they study in lectures.
View Article and Find Full Text PDFIn this paper we report for the first time an n-type carbon nanotube field effect transistor which is air- and water-stable, a necessary requirement for electrolyte gated CMOS circuit operation. The device is obtained through a simple process, where the native p-type transistor is converted to an n-type. This conversion is achieved by applying a tailor composed lipophilic membrane containing ion exchanger on the active channel area of the transistor.
View Article and Find Full Text PDFCarbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties.
View Article and Find Full Text PDFA flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.
View Article and Find Full Text PDF