Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems.
View Article and Find Full Text PDFExcited state properties such as emission, exciton transport, electron transfer, etc., are strongly dependent on the shape, size and molecular arrangement of chromophore based supramolecular architectures. Herein, we demonstrate creation and control of distinct supramolecular energy landscapes for the reversible control of the excited-state emission processes through cascade energy transfer in chromophore assemblies, facilitated by an unprecedented solvent effect.
View Article and Find Full Text PDF