Publications by authors named "Vihola A"

Background: Titin truncating variants (TTNtvs) have been repeatedly reported as causative of recessive but not dominant skeletal muscle disorders.

Objective: To determine whether a single heterozygous nonsense variant in can be responsible for the observed dominant myopathy in a large family.

Methods: In this case series, all available family members (8 affected and 6 healthy) belonging to a single family showing autosomal dominant inheritance were thoroughly examined clinically and genetically.

View Article and Find Full Text PDF

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene.

View Article and Find Full Text PDF

Background And Objectives: This study aimed to characterize the phenotype of a novel myalgic myopathy encountered in a Finnish family.

Methods: Four symptomatic and 3 asymptomatic individuals from 2 generations underwent clinical, neurophysiologic, imaging, and muscle biopsy examinations. Targeted sequencing of all known myopathy genes was performed.

View Article and Find Full Text PDF

Recessive mutations in the DNAJB2 gene, encoding the J-domain co-chaperones DNAJB2a and DNAJB2b, have previously been reported as the genetic cause of progressive peripheral neuropathies, rarely involving pyramidal signs, parkinsonism and myopathy. We describe here a family with the first dominantly acting DNAJB2 mutation resulting in a late-onset neuromyopathy phenotype. The c.

View Article and Find Full Text PDF

Chaperone-assisted selective autophagy (CASA) is a highly selective pathway for the disposal of misfolding and aggregating proteins. In muscle, CASA assures muscle integrity by favoring the turnover of structural components damaged by mechanical strain. In neurons, CASA promotes the removal of aggregating substrates.

View Article and Find Full Text PDF

Objective: Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM.

Methods: We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9).

View Article and Find Full Text PDF

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis.

View Article and Find Full Text PDF

Background And Objectives: To determine the genetic cause of the disease in the previously reported family with adult-onset autosomal dominant distal myopathy (myopathy, distal, 3; MPD3).

Methods: Continued clinical evaluation including muscle MRI and muscle pathology. A linkage analysis with single nucleotide polymorphism arrays and genome sequencing were used to identify the genetic defect, which was verified by Sanger sequencing.

View Article and Find Full Text PDF

Background And Objectives: To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles.

Methods: Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years.

View Article and Find Full Text PDF

Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher.

View Article and Find Full Text PDF
Article Synopsis
  • A deletion mutation in the nebulin gene was discovered in a 26-year-old Finnish female patient with distal congenital myopathy and asymmetric muscle weakness.
  • Muscle biopsies showed characteristics like predominance of type 1 fibers and central nuclei, but lacked traditional nemaline bodies.
  • The mutation was identified through advanced genomic analysis techniques, and the clinical symptoms mirrored those of other similar conditions but with unique asymmetrical weakness not previously reported.
View Article and Find Full Text PDF

Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers.

View Article and Find Full Text PDF

Purpose: High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort.

View Article and Find Full Text PDF

Eight patients from five families with undiagnosed dominant distal myopathy underwent clinical, neurophysiological and muscle biopsy examinations. Molecular genetic studies were performed using targeted sequencing of all known myopathy genes followed by segregation of the identified mutations in the affected families using Sanger sequencing. Two novel mutations in DNAJB6 J domain, c.

View Article and Find Full Text PDF

We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant.

View Article and Find Full Text PDF
Article Synopsis
  • A new family with autosomal dominant rimmed vacuolar myopathy (RVM) was studied, revealing that the disorder is linked to a specific mutation in the gene.
  • Whole-exome and whole-genome sequencing were utilized alongside muscle biopsies and imaging techniques, showing typical symptoms like muscle atrophy and fatty changes in the muscles.
  • The identified mutation (c.515dupC) caused a frameshift that results in a longer protein, affecting the expression of heat shock protein beta 8 and disrupting autophagy, which could lead to future targeted treatment strategies for RVM.*
View Article and Find Full Text PDF

Objective: We report a second family with autosomal dominant transportinopathy presenting with congenital or early-onset myopathy and slow progression, causing proximal and less pronounced distal muscle weakness.

Methods: Patients had clinical examinations, muscle MRI, EMG, and muscle biopsy studies. The MYOcap gene panel was used to identify the gene defect in the family.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophies (LGMD) are genetic disorders characterized by weakness of predominantly proximal limb and trunk muscles due to progressive loss of muscle tissue. Collagen VI-related muscular dystrophies usually display more generalized muscle involvement combined with contractures and/or hyperlaxity of distal finger joints. LGMD-like phenotype of collagenopathy has only rarely been described and as reported is usually of childhood onset.

View Article and Find Full Text PDF

Objective: To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy.

Methods: We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles.

View Article and Find Full Text PDF

Objective: To identify the genetic defect causing a distal calf myopathy with cores.

Methods: Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family.

View Article and Find Full Text PDF

We report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This ∼100 kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto.

View Article and Find Full Text PDF

Following the involvement of CHCHD10 in FrontoTemporal-Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) clinical spectrum, a founder mutation (p.Gly66Val) in the same gene was identified in Finnish families with late-onset spinal motor neuronopathy (SMAJ). SMAJ is a slowly progressive form of spinal muscular atrophy with a life expectancy within normal range.

View Article and Find Full Text PDF

Multisystem proteinopathy (MSP) involves disturbances of stress granule (SG) dynamics and autophagic protein degradation that underlie the pathogenesis of a spectrum of degenerative diseases that affect muscle, brain, and bone. Specifically, identical mutations in the autophagic adaptor SQSTM1 can cause varied penetrance of 4 distinct phenotypes: amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Paget's disease of the bone, and distal myopathy. It has been hypothesized that clinical pleiotropy relates to additional genetic determinants, but thus far, evidence has been lacking.

View Article and Find Full Text PDF

Importance: Mutations in the titin gene (TTN) cause a wide spectrum of genetic diseases. The interpretation of the numerous rare variants identified in TTN is a difficult challenge given its large size.

Objective: To identify genetic variants in titin in a cohort of patients with muscle disorders.

View Article and Find Full Text PDF