Publications by authors named "Vigont V"

Article Synopsis
  • * The study investigated calcium signaling in GABA-ergic medium spiny neurons derived from iPSCs created through different methods (lentivirus and Sendai virus) from the same donor's fibroblasts.
  • * Results showed no significant differences in calcium signaling between neurons from both reprogramming methods, indicating compatibility for combining data from different iPSC models and enhancing biobanking potential.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered that a specific compound, 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide, significantly reduces calcium uptake by affecting store-operated calcium (SOC) channels, establishing a new class of inhibitors.
  • * The study compared different derivatives of 1,2,3,4-dithiadiazoles, finding that two specific compounds were particularly effective at reducing SOC entry, highlighting the role of certain chemical substituents in enhancing their inhibitory effects.
View Article and Find Full Text PDF

About 15% of patients with parkinsonism have a hereditary form of Parkinson's disease (PD). Studies on the early stages of PD pathogenesis are challenging due to the lack of relevant models. The most promising ones are models based on dopaminergic neurons (DAns) differentiated from induced pluripotent stem cells (iPSCs) of patients with hereditary forms of PD.

View Article and Find Full Text PDF
Article Synopsis
  • Quinazoline derivatives, like EVP4593, are known for their various pharmacological activities and show promise in clinical use.
  • The review highlights EVP4593's neuroprotective effects in Huntington's disease (HD) through its modulation of calcium signaling and reduction of the huntingtin protein levels, especially in patient-specific neurons.
  • Additionally, the text discusses the potential protective benefits of EVP4593 in other diseases, including cancer, heart disease, and infections, suggesting it could have a broader clinical application.
View Article and Find Full Text PDF

Pathological calcium homeostasis accompanies the development of a large number of different diseases, therefore, the search for new modulators of calcium signaling remains highly actual. Last decades store-operated calcium channels have been repeatedly postulated as a therapeutic target, so the compounds acting on them can be considered promising drug prototypes. Here, we tested several derivatives of 1,2,3,4-dithiadiazole, 1,3-thiazine, pyrazolopyrimidine and thiohydrazides for the ability to affect the thapsigargin-induced calcium response.

View Article and Find Full Text PDF
Article Synopsis
  • - The development of cell reprogramming technologies, particularly iPSCs, has revolutionized the study of human diseases, especially neurodegenerative disorders, by offering new models for both hereditary and sporadic cases.
  • - iPSCs allow researchers to examine the specific cells affected by these diseases, helping to uncover the molecular mechanisms of neurodegeneration and aiding in the identification of effective treatments.
  • - This review specifically highlights how altered calcium signaling, a crucial intracellular pathway, is observed in various neurodegenerative diseases using iPSCs-based models.
View Article and Find Full Text PDF
Article Synopsis
  • * Research using induced pluripotent stem cell technology revealed that HD76 neurons experience abnormal calcium signaling, showing increased calcium uptake that does not correlate with the length of the mutant huntingtin gene's polyglutamine tract.
  • * The study identified high levels of the protein STIM2, which is linked to excessive calcium entry in HD neurons, and found that the drug EVP4593 can reduce levels of both huntingtin and STIM2, highlighting STIM2 as a potential target for developing new treatments for HD
View Article and Find Full Text PDF

The fluorescent dye fura-2 AM was employed to record activation of Ca entry in response to a decrease in Ca concentration in the endoplasmic reticulum. Using whole-cell voltage clamp technique, we revealed Ca currents with an amplitude of 0.46±0.

View Article and Find Full Text PDF

Huntington's disease (HD) is a severe autosomal dominant neurodegenerative disorder characterized by a combination of motor, cognitive, and psychiatric symptoms, atrophy of the basal ganglia and the cerebral cortex, and inevitably progressive course resulting in death 5-20 years after manifestation of its symptoms. HD is caused by expansion of CAG repeats in the HTT gene, which leads to pathological elongation of the polyglutamine tract within the respective protein - huntingtin. In this review, we present a modern view on molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons.

View Article and Find Full Text PDF

Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca release from the endoplasmic reticulum (ER) induces Ca influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT.

View Article and Find Full Text PDF

Neurodegenerative pathologies are among the most serious and socially significant problems of modern medicine, along with cardiovascular and oncological diseases. Several attempts have been made to prevent neuronal death using novel drugs targeted to the cell calcium signaling machinery, but the lack of adequate models for screening markedly impairs the development of relevant drugs. A potential breakthrough in this field is offered by the models of hereditary neurodegenerative pathologies based on endogenous expression of mutant proteins in neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Store-operated channels activated in response to intracellular calcium store depletion represent the main pathway of calcium entry from the extracellular space in nonelectroexcitable cells. Adapter proteins organize the components of this system into integral complex. We studied the influence of adapter proteins of the Homer family on endogenous store-operated calcium Imin channels in A431 cells.

View Article and Find Full Text PDF

An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression.

View Article and Find Full Text PDF

Huntington's disease (HD) is a severe inherited neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and mental impairment. At the molecular level, HD is caused by a mutation in the first exon of the gene encoding the huntingtin protein. The mutation results in an expanded polyglutamine tract at the N-terminus of the huntingtin protein, causing the neurodegenerative pathology.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms.

Results: Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions.

View Article and Find Full Text PDF

It has been previously reported that N-terminus of mutant huntingtin (product of the 1st exon) is sufficient to cause a Huntington's disease (HD) pathological phenotype. In view of recent data suggesting that improper regulation of store-operated calcium (SOC) channels is involved in neurodegenerative processes, we investigated influence of expression of the mutant huntingtin N-terminal fragment (Htt138Q-1exon) on SOC entry (SOCE) in mouse neuroblastoma cells (Neuro-2a) and in primary culture of medium spiny neurons (MSNs) isolated from mice. The results show that SOCE in these cells is enhanced upon lentiviral expression of the Htt138Q-1exon.

View Article and Find Full Text PDF

We have shown that the expression of full-length mutated huntingtin in human neuroblastoma cells (SK-N-SH) leads to an abnormal increase in calcium entry through store-operated channels. In this paper, the expression of the N-terminal fragment of mutated huntingtin (Htt138Q-1exon) is shown to be enough to provide an actual model for Huntington's disease. We have shown that Htt138Q-1exon expression causes increased store-operated calcium entry, which is mediated by at least two types of channels in SK-N-SH cells with different reversal potentials.

View Article and Find Full Text PDF

Polyglutamine diseases are a group of pathologies affecting different parts of the brain and causing dysfunction and atrophy of certain neural cell populations. These diseases stem from mutations in various cellular genes that result in the synthesis of proteins with extended polyglutamine tracts. In particular, this concerns huntingtin, ataxins, and androgen receptor.

View Article and Find Full Text PDF

TRPC1 is a major component of store-operated calcium entry in many cell types. In our previous studies, three types of endogenous store-operated calcium channels have been described in HEK293 cells, but it remained unknown which of these channels are composed of TRPC1 proteins. Here, this issue has been addressed by performing single-channel analysis in HEK293 cells transfected with anti-TRPC1 siRNA (siTPRC1) or a TPRC1-encoding plasmid.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion within Huntingtin (Htt) protein. In the phenotypic screen we identified a class of quinazoline-derived compounds that delayed a progression of a motor phenotype in transgenic Drosophila HD flies. We found that the store-operated calcium (Ca(2+)) entry (SOC) pathway activity is enhanced in neuronal cells expressing mutant Htt and that the identified compounds inhibit SOC pathway in HD neurons.

View Article and Find Full Text PDF