Publications by authors named "Vignesh Nayak"

Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on.

View Article and Find Full Text PDF

Pharmaceutical drugs have recently emerged as one the foremost water pollutants in the environment, triggering a severe threat to living species. With their complex chemical nature and the intricacy involved in the removal process in mind, the present work investigates the performance of commercially available polyamide thin-film composite tubular nanofiltration (NF) membranes (AFC 40 and AFC 80) in removing polluting pharmaceutical drugs, namely caffeine, paracetamol and naproxen. The structural parameters of the NF membranes were estimated by water permeability measurements and retention measurements with aqueous solutions of organic, uncharged (glycerol) solutes.

View Article and Find Full Text PDF

Heavy metal removal from water resources is essential for environmental protection and the production of safe drinking water. In this direction, Zinc doped Aluminium Oxide (Zn:AlO) nanoparticles were incorporated into Polysulfone (PSf) to prepare mixed matrix membranes for the efficient removal of heavy metals from water. These Zn:AlO nanoparticles prepared by the solution combustion method have a very high surface area (261.

View Article and Find Full Text PDF

Hydrophobic polysulphone (PSf) was reformed into a hydrophilic polymer by sulphonation (via electrophilic substitution) and was subsequently made into a composite by incorporating nano titania to reduce Cr (VI) in the concentrated feed to Cr (III), thus eliminating the hazards of Cr (VI). The modified polymer and its composites were characterized by spectroscopic and microscopic techniques. The composite membranes exhibited enhanced hydrophilicity and flux and were evaluated for the rejection of chromium.

View Article and Find Full Text PDF

Herein, an attempt has been made to prepare a novel membrane with good efficiency for removal of heavy metal ions namely lead (Pb), cadmium (Cd) and chromium (Cr). 4-amino benzoic acid (ABA) was covalently grafted onto the poly vinyl chloride (PVC) backbone by CN bond to enhance the hydrophilicity. H NMR and ATR-IR spectroscopy analysis confirmed the chemical modification of PVC.

View Article and Find Full Text PDF

Herein we present a new approach for the complete removal of Cr(VI) species, through reduction of Cr(VI) to Cr(III), followed by adsorption of Cr(III). Reduction of chromium from water is an important challenge, as Cr(IV) is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder.

View Article and Find Full Text PDF

Although many approaches have been tried in the attempt to reduce the devastating impact of stroke, tissue plasminogen activator for thromboembolic stroke is the only proved, effective acute stroke treatment to date. Vasopressin, an acute-phase reactant, is released after brain injury and is partially responsible for the subsequent inflammatory response via activation of divergent pathways. Recently there has been increasing interest in vasopressin because it is implicated in inflammation, cerebral edema, increased intracerebral pressure, and cerebral ion and neurotransmitter dysfunctions after cerebral ischemia.

View Article and Find Full Text PDF