Publications by authors named "Vig B"

Poly (vinyl alcohol), PVA, a commonly used excipient to coat tablets, forms insoluble films in the presence of acids and thermal stress. This may lead to drug products failing to meet dissolution specifications over time. Studies were conducted to understand the effect of acid strength, processing conditions, and storage stress on the mechanism of insoluble film formation using PVA and Opadry II as model systems.

View Article and Find Full Text PDF

Protein adsorbed at the silicone oil-water interface can undergo a conformational change that has the potential to induce protein aggregation on storage. Characterization of the protein structures at interface is therefore critical for understanding the protein-interface interactions. In this article, we have applied sum frequency generation (SFG) spectroscopy for studying the secondary structures of a fusion protein at interface and the surfactant effect on protein adsorption to silicone oil-water interface.

View Article and Find Full Text PDF

A generalized screening approach, applying isothermal calorimetry at 37 °C 100% RH, to formulations of spray dried dispersions (SDDs) for two active pharmaceutical ingredients (APIs) (BMS-903452 and BMS-986034) is demonstrated. APIs 452 and 034, with similar chemotypes, were synthesized and promoted during development for oral dosing. Both APIs were formulated as SDDs for animal exposure studies using the polymer hydroxypropylmethlycellulose acetyl succinate M grade (HPMCAS-M).

View Article and Find Full Text PDF

In vitro and in vivo experimental models are frequently used to assess a new chemical entity's (NCE) biopharmaceutical performance risk for food effect (FE) in humans. Their ability to predict human FE hinges on replicating key features of clinical FE studies and building an in vitro-in vivo relationship (IVIVR). In this study, 22 compounds that span a wide range of physicochemical properties, Biopharmaceutics Classification System (BCS) classes, and food sensitivity were evaluated for biorelevant dissolution in fasted- and fed-state intestinal media and the dog fed/fasted-state pharmacokinetic model.

View Article and Find Full Text PDF

Purpose: Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated.

Methods: Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling.

View Article and Find Full Text PDF

The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles.

View Article and Find Full Text PDF

Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others.

View Article and Find Full Text PDF

Prodrugs are biologically inactive agents that upon biotransformation in vivo result in active drug molecules. Since prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug, prodrug design should be considered at the early stages of preclinical development. In this regard, natural and synthetic amino acids offer wide structural diversity and physicochemical properties.

View Article and Find Full Text PDF

The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®.

View Article and Find Full Text PDF

A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5'-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 - 2.

View Article and Find Full Text PDF

The purpose of this study was to investigate the utility of stably transfected MDCK-hPepT1 cells for identifying peptide transporter substrates in early drug discovery and compare the characteristics of this cell line with Caco-2 cells. MDCK-hPepT1, MDCK-mock, and Caco-2 cells grown to confluence on 24-well Transwell were used for this study. Expression levels of different transporter proteins (PepT1, PepT2, P-gp) in these cell lines were assessed by qRT-PCR.

View Article and Find Full Text PDF

Purpose: To determine the bioactivation and uptake of prolidase-targeted proline prodrugs of melphalan in six cancer cell lines with variable prolidase expression and to evaluate prolidase-dependence of prodrug cytotoxicity in the cell lines compared to that of the parent drug, melphalan.

Materials And Methods: Hydrolysis, cell uptake, and cell proliferation studies of melphalan and the L: - and D: -proline prodrugs of melphalan, prophalan-L: and prophalan-D: , respectively, were conducted in the cancer cell lines using established procedures.

Results: The bioactivation of prophalan-L: in the cancer cell lines exhibited high correlation with their prolidase expression levels (r (2) = 0.

View Article and Find Full Text PDF

The human intestinal oligopeptide transporter (PEPT1) facilitates the absorption of dipeptides, tripeptides, and many peptidomimetic drugs. In this study, a large number of peptides were selected to investigate the structural features required for PEPT1 transport. Binding affinity was determined in a Gly-Sar uptake inhibition assay, whereas functional transport was ranked in a membrane depolarization assay.

View Article and Find Full Text PDF

Amino acid ester prodrugs of antiviral and anticancer nucleoside drugs were developed to improve oral bioavailability or to reduce systemic toxicity. We studied the interaction of human concentrative nucleoside transporter (hCNT2) cloned from intestine with various amino acid ester prodrugs of floxuridine (FUdR) and 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB). Na(+)-dependent uptakes of [(3)H]-inosine and [(3)H]-adenosine were measured in U251 cells transiently expressing intestinal hCNT2.

View Article and Find Full Text PDF

Biphenyl hydrolase-like protein (BPHL, NCBI accession number NP_004323) is a novel human serine hydrolase recently identified as a human valacyclovirase, catalyzing the hydrolytic activation of the antiviral prodrugs valacyclovir and valganciclovir. The substrate specificity of BPHL was investigated with a series of amino acid ester prodrugs of the therapeutic nucleoside analogues: acyclovir, zidovudine, floxuridine, 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole, and gemcitabine. The hydrolysis of typical esterase and aminopeptidase substrates by BPHL was also investigated.

View Article and Find Full Text PDF

PepT1 is a transporter of proven pharmaceutical utility for enhancing oral absorption. A high-throughput, robust functional assay, capable of distinguishing PepT1 binders from substrates, allowing identification and/or prediction of drug candidate activation was developed. An MDCK epithelial cell line was transfected with rPepT1.

View Article and Find Full Text PDF

Floxuridine is a clinically proven anticancer agent in the treatment of metastatic colon carcinomas and hepatic metastases. However, prodrug strategies may be necessary to improve its physiochemical properties and selectivity and to reduce undesirable toxicity effects. Previous studies with amino acid ester prodrugs of nucleoside drugs targeted to the PEPT1 transporter coupled with recent findings of the functional expression of the PEPT1 oligopeptide transporter in pancreatic adenocarcinoma cell lines suggest the potential of PEPT1 as therapeutic targets for cancer treatment.

View Article and Find Full Text PDF

Gemcitabine, a clinically effective nucleoside anticancer agent, is a polar drug with low membrane permeability and is administered intravenously. Further, extensive degradation of gemcitabine by cytidine deaminase to an inactive metabolite in the liver affects its activity adversely. Thus, strategies that provide both enhanced transport and high metabolic bioevasion would potentially lead to oral alternatives that may be clinically useful.

View Article and Find Full Text PDF

Bioinformatics tools such as Perl, Visual Basic, Cluster, and TreeView were used to analyze public gene expression databases in order to identify potential enzyme targets for prodrug strategies. The analyses indicated that prolidase might be a desirable enzyme target based on its differential expression in melanoma cancer cell lines and its high substrate specificity for dipeptides containing proline at the carboxy terminus. RT-PCR expression of prolidase and hydrolytic activity against N-glycyl-l-proline (GLY-PRO), a standard substrate of prolidase, determined in tumor cell lines, exhibited a high correlation (r(2) = 0.

View Article and Find Full Text PDF

Amino acid ester prodrugs of 2-bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)benzimidazole (BDCRB) were synthesized and evaluated for their affinity for hPEPT1, an intestinal oligopeptide transporter. Assays of competitive inhibition of [(3)H]glycylsarcosine (Gly-Sar) uptake in HeLa/hPEPT1 cells by the amino acid ester prodrugs of BDCRB suggested their 2- to 4-fold higher affinity for hPEPT1 compared to BDCRB. Further, promoieties with hydrophobic side chains and l-configuration were preferred by the hPEPT1 transporter.

View Article and Find Full Text PDF

Novel N-terminus-to-side-chain cyclic analogs of the opioid peptide dynorphin (Dyn) A-(1-11)NH(2) were prepared that retain the basicity of the N-terminal amine and restrict the backbone conformation around the important Tyr(1) residue. Cyclic peptides were synthesized in which the N-terminal amine and the N(epsilon)-amine of a Lys at position 3 or 5 were attached to the alpha-carbon and carbonyl of an acetyl group, respectively. Several synthetic strategies were explored with detailed analysis of the side reactions in order to obtain the desired cyclic peptides.

View Article and Find Full Text PDF

cyclo[d-Asp(2),Dap(5)]Dyn A-(1-13)NH(2) (Dap, 2,3-diaminopropionic acid; Dyn A, dynorphin A), synthesized previously in our laboratory, showed sub-nanomolar affinity for kappa opioid receptors and potent agonist activity in the guinea pig ileum assay (Arttamangkul et al., J. Med.

View Article and Find Full Text PDF

Purpose: To synthesize amino acid ester prodrugs of floxuridine (FUdR) and to investigate the effects of structure, stereochemistry, and site of esterification of promoiety on the rates of hydrolysis of these prodrugs in Caco-2 cell homogenates.

Methods: Amino acid ester prodrugs of FUdR were synthesized using established procedures. The kinetics of hydrolysis of prodrugs was evaluated in human adenocarcinoma cell line (Caco-2) homogenates and pH 7.

View Article and Find Full Text PDF