Background And Objectives: Wound healing is an important biomedical problem with various associated complications. Although cutaneous wound healing has been studied in vivo extensively using various optical imaging methods, early-stage cellular healing processes were difficult to study due to scab formation. The objective of this study is to demonstrate that minimal laser wounds and optical microscopy can access the detailed cellular healing processes of cutaneous wounds from the early stage.
View Article and Find Full Text PDFThe microbiota regulate hematopoiesis in the bone marrow (BM); however, the detailed mechanisms remain largely unknown. In this study, we explored how microbiota-derived molecules (MDMs) were transferred to the BM and sensed by the local immune cells to control hematopoiesis under steady-state conditions. We reveal that MDMs, including bacterial DNA (bDNA), reach the BM via systemic blood circulation and are captured by CX3CR1+ mononuclear cells (MNCs).
View Article and Find Full Text PDFTwo-photon microscopy (TPM) is a three dimensional (3D) microscopic technique based on nonlinear two-photon fluorescence, which has been tested as an alternative to reflectance confocal microscopy (RCM) for detecting fungal keratitis via optical imaging. Although TPM provided images with better contrast than RCM for fungal keratitis, its imaging speed was relatively low because of weak intrinsic signal. Moxifloxacin, a Food and Drug Administration (FDA)-approved antibiotic, was recently used as a cell-labeling agent for TPM.
View Article and Find Full Text PDFDelineating brain tumor margin is critical for maximizing tumor removal while sparing adjacent normal tissue for better clinical outcome. We describe the use of moxifloxacin-based two-photon (TP)/coherent anti-Stokes Raman scattering (CARS) combined microscopy for differentiating normal mouse brain tissue from metastatic brain tumor tissue based on histoarchitectural and biochemical differences. Moxifloxacin, an FDA-approved compound, was used to label cells in the brain, and moxifloxacin-based two-photon microscopy (TPM) revealed tumor lesions with significantly high cellular density and invading edges in a metastatic brain tumor model.
View Article and Find Full Text PDFIntravital microscopy of mouse calvarial bone marrow (BM) is a powerful method for studying hematopoietic stem cells (HSCs) and the BM microenvironment at the cellular level. However, the current method used to access the mouse calvaria allows for only a few imaging times in the same mouse because of scar formation and inflammation induced by multiple surgeries. Longitudinal imaging of the BM may help better understand its microenvironment.
View Article and Find Full Text PDFMultiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM.
View Article and Find Full Text PDFBoth polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property.
View Article and Find Full Text PDFPolarization-sensitive optical coherence tomography (PS-OCT) is a functional OCT providing both structural and birefringent information of the sample, and it has been applied to the studies of various organs having polarization properties. Fiber-based PS-OCT is sensitive to specular reflection from the sample surface, because signal saturation due to the strong specular reflection can make the polarization measurement difficult. We developed a dark-field PS-OCT which can avoid the specular reflection problem.
View Article and Find Full Text PDF