Retrofitting retirement or existing fossil boiler with biomass is an important method of curbing electricity shortage and lowering the cost of modern power plants. However, the use of biomass combustion is hampered by operational problems, such as the resulting high unburned carbon, amount of bottom ash, and nitrogen oxide (NOx) release. In this study, we investigated the burning of pulverized biomass in a retrofitting boiler power plant using computational fluid dynamics of commercial software fluent ANSYS to determine the optimal combustion conditions.
View Article and Find Full Text PDFBiomass can be upgraded via torrefaction, and torrefied kenaf (TK) is a fuel that allows blending with coal at high ratios. In the present study, raw kenaf () (RK) was torrefied at 523 K for 30 min and then mixed with Vietnamese anthracite (NinhBinh, NB) before co-pyrolysis. Thermogravimetric (TG) analysis was used to evaluate the behavior of RK, TK, and blended RK/TK during co-pyrolysis at biomass blending ratios (BBRs) of 0, 25, 50, 75, and 100 wt %.
View Article and Find Full Text PDFTorrefaction is an appealing pretreatment method for improving the fuel properties of kenaf biomass before its utilization in thermochemical processes. This study evaluated and compared the impact of torrefaction on thermal behavior and kinetics during pyrolysis and gasification. Thermogravimetric analysis experiments were conducted at temperatures of 300-1173 K at several heating rates under N and CO atmospheres.
View Article and Find Full Text PDF